19 resultados para SUPEROXIDE ANION
Resumo:
Background: The activation of hepatic stellate cells (HSCs) plays a pivotal role during liver injury because the resulting myofibroblasts (MFBs) are mainly responsible for connective tissue re-assembly. MFBs represent therefore cellular targets for anti-fibrotic therapy. In this study, we employed activated HSCs, termed M1-4HSCs, whose transdifferentiation to myofibroblastoid cells (named M-HTs) depends on transforming growth factor (TGF)-β. We analyzed the oxidative stress induced by TGF-β and examined cellular defense mechanisms upon transdifferentiation of HSCs to M-HTs. Results: We found reactive oxygen species (ROS) significantly upregulated in M1-4HSCs within 72 hours of TGF-β administration. In contrast, M-HTs harbored lower intracellular ROS content than M1-4HSCs, despite of elevated NADPH oxidase activity. These observations indicated an upregulation of cellular defense mechanisms in order to protect cells from harmful consequences caused by oxidative stress. In line with this hypothesis, superoxide dismutase activation provided the resistance to augmented radical production in M-HTs, and glutathione rather than catalase was responsible for intracellular hydrogen peroxide removal. Finally, the TGF-β/NADPH oxidase mediated ROS production correlated with the upregulation of AP-1 as well as platelet-derived growth factor receptor subunits, which points to important contributions in establishing antioxidant defense. Conclusion: The data provide evidence that TGF-β induces NADPH oxidase activity which causes radical production upon the transdifferentiation of activated HSCs to M-HTs. Myofibroblastoid cells are equipped with high levels of superoxide dismutase activity as well as glutathione to counterbalance NADPH oxidase dependent oxidative stress and to avoid cellular damage.
Resumo:
The present study reports arsenic speciation analysis in edible Shiitake (Lentinula edodes) products. The study focused on the extraction, and accurate quantification of inorganic arsenic (iAs), the most toxic form of arsenic, which was selectively separated and determined using anion exchange LC-ICPMS. A wide variety of edible Shiitake products (fresh mushrooms, food supplements, canned and dehydrated) were purchased and analysed. A cultivated Shiitake grown under controlled conditions was also analysed. The extraction method showed satisfactory extraction efficiencies (>90%) and column recoveries (>85%) for all samples. Arsenic speciation revealed that iAs was the major As compound up to 1.38 mg As per kg dm (with a mean percentage of 84% of the total arsenic) and other organoarsenicals were found as minor species. Shiitake products had high proportions of iAs and therefore should not be ignored as potential contributors to dietary iAs exposure in populations with a high intake of Shiitake products.
Resumo:
Background Exhausting exercise reduces the mitochondrial DNA (mtDNA) content in the skeletal muscle of healthy subjects due to oxidative damage. Since patients with chronic obstructive pulmonary disease (COPD) suffer enhanced oxidative stress during exercise, it was hypothesised that the mtDNA content will be further reduced. Objective To investigate the effects of exercise above and below the lactate threshold (LT) on the mtDNA content of skeletal muscle of patients with COPD. Methods Eleven patients with COPD (676 8 years; forced expiratory volume in 1s (FEV1)456 8%ref) and 10 healthy controls (666 4 years; FEV1 906 7% ref) cycled 45 min above LT (65% peak oxygen uptake (V9O2 peak)and another 7 patients (656 6 years; FEV1 506 4%ref)and 7 controls (566 9 years;FEV1 926 6%ref) cycled 45 min below their LT (50% V9O2 peak). Biopsies from the vastus lateralis muscle were obtained before exercise, immediately after and 1 h, 1 day and 1 week later to determine by PCR the mtDNA/nuclear DNA (nDNA) ratio (a marker of mtDNA content) and the expression of the peroxisome proliferator-activated receptor- g coactivator-1 a (PGC-1a)mRNA and the amount of reactive oxygen species produced during exercise was estimated from total V9O2. Results Skeletal muscle mtDNA/nDNA fell significantly after exercise above the LT both in controls and in patients with COPD, but the changes were greater in those with COPD. These changes correlated with production of reactive oxygen species, increases in manganese superoxide dismutase and PGC-1 a mRNA and returned to baseline values 1 week later. This pattern of response wa was also observed, albeit minimised, in patients exercising below the LT. Conclusions In patients with COPD, exercise enhances the decrease in mtDNA content of skeletal muscle and the expression of PGC-1 a mRNA seen in healthy subjects probably due to oxidative stress.
Resumo:
Trying to define the precise role played by insulin regulating the survival of brown adipocytes, we have used rat fetal brown adipocytes maintained in primary culture. The effect of insulin on apoptosis and the mechanisms involved were assessed. Different from the known effects of insulin as a survival factor, we have found that long-term treatment (72 h) with insulin induces apoptosis in rat fetal brown adipocytes. This process is dependent on the phosphatidylinositol 3-kinase/mammalian target of rapamycin/p70 S6 kinase pathway. Short-term treatment with the conditioned medium from brown adipocytes treated with insulin for 72 h mimicked the apoptotic effect of insulin. During the process, caspase 8 activation, Bid cleavage, cytochrome c release, and activation of caspases 9 and 3 are sequentially produced. Treatment with the caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp (Z-VAD), prevents activation of this apoptotic cascade. The antioxidants, ascorbic acid and superoxide dismutase, also impair this process of apoptosis. Moreover, generation of reactive oxygen species (ROS), probably through reduced nicotinamide adenine dinucleotide phosphate oxidases, and a late decrease in reduced glutathione content are produced. According to this, antioxidants prevent caspase 8 activation and Bid cleavage, suggesting that ROS production is an important event mediating this process of apoptosis. However, the participation of uncoupling protein-1, -2, and -3 regulating ROS is unclear because their levels remain unchanged upon insulin treatment for 72 h. Our data suggest that the prolonged hyperinsulinemia might cause insulin resistance through the loss of brown adipose tissue.