72 resultados para SPECTRAL CLASSIFICATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent trend in digital mammography is computer-aided diagnosis systems, which are computerised tools designed to assist radiologists. Most of these systems are used for the automatic detection of abnormalities. However, recent studies have shown that their sensitivity is significantly decreased as the density of the breast increases. This dependence is method specific. In this paper we propose a new approach to the classification of mammographic images according to their breast parenchymal density. Our classification uses information extracted from segmentation results and is based on the underlying breast tissue texture. Classification performance was based on a large set of digitised mammograms. Evaluation involves different classifiers and uses a leave-one-out methodology. Results demonstrate the feasibility of estimating breast density using image processing and analysis techniques

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we review first some of the possibilities in which the notions of Fo lner sequences and quasidiagonality have been applied to spectral approximation problems. We construct then a canonical Fo lner sequence for the crossed product of a concrete C* -algebra and a discrete amenable group. We apply our results to the rotation algebra (which contains interesting operators like almost Mathieu operators or periodic magnetic Schrödinger operators on graphs) and the C* -algebra generated by bounded Jacobi operators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main result of this work is a parametric description of the spectral surfaces of a class of periodic 5-diagonal matrices, related to the strong moment problem. This class is a self-adjoint twin of the class of CMV matrices. Jointly they form the simplest possible classes of 5-diagonal matrices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A statistical method for classification of sags their origin downstream or upstream from the recording point is proposed in this work. The goal is to obtain a statistical model using the sag waveforms useful to characterise one type of sags and to discriminate them from the other type. This model is built on the basis of multi-way principal component analysis an later used to project the available registers in a new space with lower dimension. Thus, a case base of diagnosed sags is built in the projection space. Finally classification is done by comparing new sags against the existing in the case base. Similarity is defined in the projection space using a combination of distances to recover the nearest neighbours to the new sag. Finally the method assigns the origin of the new sag according to the origin of their neighbours

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. Here, we describe the development of an automatic breast tissue classification methodology, which can be summarized in a number of distinct steps: 1) the segmentation of the breast area into fatty versus dense mammographic tissue; 2) the extraction of morphological and texture features from the segmented breast areas; and 3) the use of a Bayesian combination of a number of classifiers. The evaluation, based on a large number of cases from two different mammographic data sets, shows a strong correlation ( and 0.67 for the two data sets) between automatic and expert-based Breast Imaging Reporting and Data System mammographic density assessment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given a set of images of scenes containing different object categories (e.g. grass, roads) our objective is to discover these objects in each image, and to use this object occurrences to perform a scene classification (e.g. beach scene, mountain scene). We achieve this by using a supervised learning algorithm able to learn with few images to facilitate the user task. We use a probabilistic model to recognise the objects and further we classify the scene based on their object occurrences. Experimental results are shown and evaluated to prove the validity of our proposal. Object recognition performance is compared to the approaches of He et al. (2004) and Marti et al. (2001) using their own datasets. Furthermore an unsupervised method is implemented in order to evaluate the advantages and disadvantages of our supervised classification approach versus an unsupervised one

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Lynch syndrome (LS) is an autosomal dominant inherited cancer syndrome characterized by early onset cancers of the colorectum, endometrium and other tumours. A significant proportion of DNA variants in LS patients are unclassified. Reports on the pathogenicity of the c.1852_1853AA>GC (p.Lys618Ala) variant of the MLH1 gene are conflicting. In this study, we provide new evidence indicating that this variant has no significant implications for LS.Methods: The following approach was used to assess the clinical significance of the p.Lys618Ala variant: frequency in a control population, case-control comparison, co-occurrence of the p.Lys618Ala variant with a pathogenic mutation, co-segregation with the disease and microsatellite instability in tumours from carriers of the variant. We genotyped p.Lys618Ala in 1034 individuals (373 sporadic colorectal cancer [CRC] patients, 250 index subjects from families suspected of having LS [revised Bethesda guidelines] and 411 controls). Three well-characterized LS families that fulfilled the Amsterdam II Criteria and consisted of members with the p.Lys618Ala variant were included to assess co-occurrence and co-segregation. A subset of colorectal tumour DNA samples from 17 patients carrying the p.Lys618Ala variant was screened for microsatellite instability using five mononucleotide markers.Results: Twenty-seven individuals were heterozygous for the p.Lys618Ala variant; nine had sporadic CRC (2.41%), seven were suspected of having hereditary CRC (2.8%) and 11 were controls (2.68%). There were no significant associations in the case-control and case-case studies. The p.Lys618Ala variant was co-existent with pathogenic mutations in two unrelated LS families. In one family, the allele distribution of the pathogenic and unclassified variant was in trans, in the other family the pathogenic variant was detected in the MSH6 gene and only the deleterious variant co-segregated with the disease in both families. Only two positive cases of microsatellite instability (2/17, 11.8%) were detected in tumours from p.Lys618Ala carriers, indicating that this variant does not play a role in functional inactivation of MLH1 in CRC patients.Conclusions: The p.Lys618Ala variant should be considered a neutral variant for LS. These findings have implications for the clinical management of CRC probands and their relatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the ∼1% of the human genome in the ENCODE regions, only about half of the transcriptionally active regions (TARs) identified with tiling microarrays correspond to annotated exons. Here we categorize this large amount of “unannotated transcription.” We use a number of disparate features to classify the 6988 novel TARs—array expression profiles across cell lines and conditions, sequence composition, phylogenetic profiles (presence/absence of syntenic conservation across 17 species), and locations relative to genes. In the classification, we first filter out TARs with unusual sequence composition and those likely resulting from cross-hybridization. We then associate some of those remaining with proximal exons having correlated expression profiles. Finally, we cluster unclassified TARs into putative novel loci, based on similar expression and phylogenetic profiles. To encapsulate our classification, we construct a Database of Active Regions and Tools (DART.gersteinlab.org). DART has special facilities for rapidly handling and comparing many sets of TARs and their heterogeneous features, synchronizing across builds, and interfacing with other resources. Overall, we find that ∼14% of the novel TARs can be associated with known genes, while ∼21% can be clustered into ∼200 novel loci. We observe that TARs associated with genes are enriched in the potential to form structural RNAs and many novel TAR clusters are associated with nearby promoters. To benchmark our classification, we design a set of experiments for testing the connectivity of novel TARs. Overall, we find that 18 of the 46 connections tested validate by RT-PCR and four of five sequenced PCR products confirm connectivity unambiguously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pseudo-spectral time-domain (PSTD) method is an alternative time-marching method to classicalleapfrog finite difference schemes in the simulation of wave-like propagating phenomena. It is basedon the fundamentals of the Fourier transform to compute the spatial derivatives of hyperbolic differential equations. Therefore, it results in an isotropic operator that can be implemented in an efficient way for room acoustics simulations. However, one of the first issues to be solved consists on modeling wallabsorption. Unfortunately, there are no references in the technical literature concerning to that problem. In this paper, assuming real and constant locally reacting impedances, several proposals to overcome this problem are presented, validated and compared to analytical solutions in different scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Pseudo-Spectral Time Domain (PSTD) method is an alternative time-marching method to classical leapfrog finite difference schemes inthe simulation of wave-like propagating phenomena. It is based on the fundamentals of the Fourier transform to compute the spatial derivativesof hyperbolic differential equations. Therefore, it results in an isotropic operator that can be implemented in an efficient way for room acousticssimulations. However, one of the first issues to be solved consists on modeling wall absorption. Unfortunately, there are no references in thetechnical literature concerning to that problem. In this paper, assuming real and constant locally reacting impedances, several proposals toovercome this problem are presented, validated and compared to analytical solutions in different scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expressions relating spectral efficiency, power, and Doppler spectrum, are derived for Rayleigh-faded wireless channels with Gaussian signal transmission. No side information on the state of the channel is assumed at the receiver. Rather, periodic reference signals are postulated in accordance with the functioning of most wireless systems. The analysis relies on a well-established lower bound, generally tight and asymptotically exact at low SNR. In contrast with most previous studies, which relied on block-fading channel models, a continuous-fading model is adopted. This embeds the Doppler spectrum directly in the derived expressions, imbuing them with practical significance. Closed-form relationships are obtained for the popular Clarke-Jakes spectrum and informative expansions, valid for arbitrary spectra, are found for the low- and high-power regimes. While the paper focuses on scalar channels, the extension to multiantenna settings is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expressions relating spectral efficiency, power and Doppler spectrum are derived for low-power Rayleighfaded wireless channels with proper complex signaling. Noside information on the state of the channel is assumed at the receiver. Rather, periodic reference signals are postulated inaccordance with the functioning of most wireless systems. In contrast with most previous studies, which relied on block-fading channel models, a continuous-fading model is adopted. This embeds the Doppler spectrum directly in thederived expressions thereby imbuing them with practical significance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic classification of makams from symbolic data is a rarely studied topic. In this paper, first a review of an n-gram based approach is presented using various representations of the symbolic data. While a high degree of precision can be obtained, confusion happens mainly for makams using (almost) the same scale and pitch hierarchy but differ in overall melodic progression, seyir. To further improve the system, first n-gram based classification is tested for various sections of the piece to take into account a feature of the seyir that melodic progression starts in a certain region of the scale. In a second test, a hierarchical classification structure is designed which uses n-grams and seyir features in different levels to further improve the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subjective language detection is one of the most important challenges in Sentiment Analysis. Because of the weight and frequency in opinionated texts, adjectives are considered a key piece in the opinion extraction process. These subjective units are more and more frequently collected in polarity lexicons in which they appear annotated with their prior polarity. However, at the moment, any polarity lexicon takes into account prior polarity variations across domains. This paper proves that a majority of adjectives change their prior polarity value depending on the domain. We propose a distinction between domain dependent and romain independent adjectives. Moreover, our analysis led us to propose a further classification related to subjectivity degree: constant, mixed and highly subjective adjectives. Following this classification, polarity values will be a better support for Sentiment Analysis.