41 resultados para SINGULAR POTENTIALS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

El treball tracta sobre l'ús de les noves tecnologies entre els adolescents i la relació que s'en deriva a l'escola, la família i la societat en general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of the SAOP potential for the calculation of NMR chemical shifts was evaluated. SAOP results show considerable improvement with respect to previous potentials, like VWN or BP86, at least for the carbon, nitrogen, oxygen, and fluorine chemical shifts. Furthermore, a few NMR calculations carried out on third period atoms (S, P, and Cl) improved when using the SAOP potential

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Recent advances on high-throughput technologies have produced a vast amount of protein sequences, while the number of high-resolution structures has seen a limited increase. This has impelled the production of many strategies to built protein structures from its sequence, generating a considerable amount of alternative models. The selection of the closest model to the native conformation has thus become crucial for structure prediction. Several methods have been developed to score protein models by energies, knowledge-based potentials and combination of both.Results: Here, we present and demonstrate a theory to split the knowledge-based potentials in scoring terms biologically meaningful and to combine them in new scores to predict near-native structures. Our strategy allows circumventing the problem of defining the reference state. In this approach we give the proof for a simple and linear application that can be further improved by optimizing the combination of Zscores. Using the simplest composite score () we obtained predictions similar to state-of-the-art methods. Besides, our approach has the advantage of identifying the most relevant terms involved in the stability of the protein structure. Finally, we also use the composite Zscores to assess the conformation of models and to detect local errors.Conclusion: We have introduced a method to split knowledge-based potentials and to solve the problem of defining a reference state. The new scores have detected near-native structures as accurately as state-of-art methods and have been successful to identify wrongly modeled regions of many near-native conformations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Minkowski's ?(x) function can be seen as the confrontation of two number systems: regular continued fractions and the alternated dyadic system. This way of looking at it permits us to prove that its derivative, as it also happens for many other non-decreasing singular functions from [0,1] to [0,1], when it exists can only attain two values: zero and infinity. It is also proved that if the average of the partial quotients in the continued fraction expansion of x is greater than k* =5.31972, and ?'(x) exists then ?'(x)=0. In the same way, if the same average is less than k**=2 log2(F), where F is the golden ratio, then ?'(x)=infinity. Finally some results are presented concerning metric properties of continued fraction and alternated dyadic expansions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1952 F. Riesz and Sz.Nágy published an example of a monotonic continuous function whose derivative is zero almost everywhere, that is to say, a singular function. Besides, the function was strictly increasing. Their example was built as the limit of a sequence of deformations of the identity function. As an easy consequence of the definition, the derivative, when it existed and was finite, was found to be zero. In this paper we revisit the Riesz-N´agy family of functions and we relate it to a system for real numberrepresentation which we call (t, t-1) expansions. With the help of these real number expansions we generalize the family. The singularity of the functions is proved through some metrical properties of the expansions used in their definition which also allows us to give a more precise way of determining when the derivative is 0 or infinity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Descripció del bloc granític basculant, conegut amb el nom de 'Pedralta', situat entre els termes municipals de Santa Cristina d'Aro i Sant Feliu arrel de la seva caiguda per causes naturals, el 10 de desembre de 1996

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a method to compute, assuming a continuous distribution of sources, the elementary potential created by a differential element of volume of matter, whose integral generates a known adsorption field V(z) for a planar surface. We show that this elementary potential is univocally determined by the original field and can be used to generate adsorption potentials for other nontrivial geometries. We illustrate the method for the Chizmeshya-Cole-Zaremba physisorption potential and discuss several examples and applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various modern nucleon-nucleon (NN) potentials yield a very accurate fit to the nucleon-nucleon scattering phase shifts. The differences between these interactions in describing properties of nuclear matter are investigated. Various contributions to the total energy are evaluated employing the Hellmann-Feynman theorem. Special attention is paid to the two-nucleon correlation functions derived from these interactions. Differences in the predictions of the various interactions can be traced back to the inclusion of nonlocal terms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information on level density for nuclei with mass numbers A?20250 is deduced from discrete low-lying levels and neutron resonance data. The odd-mass nuclei exhibit in general 47 times the level density found for their neighboring even-even nuclei at the same excitation energy. This excess corresponds to an entropy of ?1.7kB for the odd particle. The value is approximately constant for all midshell nuclei and for all ground state spins. For these nuclei it is argued that the entropy scales with the number of particles not coupled in Cooper pairs. A simple model based on the canonical ensemble theory accounts qualitatively for the observed properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical study of Brownian motion of noninteracting particles in random potentials is presented. The dynamics are modeled by Langevin equations in the high friction limit. The random potentials are Gaussian distributed and short ranged. The simulations are performed in one and two dimensions. Different dynamical regimes are found and explained. Effective subdiffusive exponents are obtained and commented on.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been a recent revolution in the ability to manipulate micrometer-sized objects on surfaces patterned by traps or obstacles of controllable configurations and shapes. One application of this technology is to separate particles driven across such a surface by an external force according to some particle characteristic such as size or index of refraction. The surface features cause the trajectories of particles driven across the surface to deviate from the direction of the force by an amount that depends on the particular characteristic, thus leading to sorting. While models of this behavior have provided a good understanding of these observations, the solutions have so far been primarily numerical. In this paper we provide analytic predictions for the dependence of the angle between the direction of motion and the external force on a number of model parameters for periodic as well as random surfaces. We test these predictions against exact numerical simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we develop the canonical formalism for constrained systems with a finite number of degrees of freedom by making use of the PoincarCartan integral invariant method. A set of variables suitable for the reduction to the physical ones can be obtained by means of a canonical transformation. From the invariance of the PoincarCartan integral under canonical transformations we get the form of the equations of motion for the physical variables of the system.