23 resultados para SHIGA TOXIN
Resumo:
We have reported in a variety of mammalian cells the reversible formation of a filamentous actin (F-actin)-enriched aggresome generated by the actin toxin jasplakinolide (Lázaro-Diéguez et al., J Cell Sci 2008; 121:1415-25). Notably, this F-actin aggresome (FAG) resembles in many aspects the pathological Hirano body, which frequently appears in some diseases such as Alzheimer's and alcoholism. Using selective inhibitors, we examined the molecular and subcellular mechanisms that participate in the clearance of the FAG. Chaperones, microtubules, proteasomes and autophagosomes all actively participate to eliminate the FAG. Here we compile and compare these results and discuss the involvement of each process. Because of its simplicity and high reproducibility, our cellular model could help to test pharmacological agents designed to interfere with the mechanisms involved in the clearance of intracellular bodies and, in particular, of those enriched in F-actin.
Resumo:
The action of botulinum neurotoxin on acetylcholine release, and on the structural changes at the presynaptic membrane associated with the transmitter release,was studied by using a subcellular fraction of cholinergic nerve terminals (synaptosomes) isolated from the Torpedo electric organ. Acetylcholine and ATP release were continuously monitored by chemiluminescent methods.To catch the membrane morphological changes, the quick-freezing method was applied. Our results show that botulinum neurotoxin inhibits the release of acetylcholine from these isolated nerve terminals in a dose-dependent manner, whereas ATP release is not affected. The maximal inhibition (70%) is achieved at neurotoxin concentrations as low as 125 pM with an incubation time of 6 min. This effect is not linked to an alteration of the integrity of the synaptosomes since, after poisoning by botulinum neurotoxin type A, they show a nonmodified occluded lactate dehydrogenase activity. Moreover, membrane potential is not altered by the toxin with respect to the control, either in resting condition or after potassium depolarization. In addition to acetylcholine release inhibition, botulinum neurotoxin blocks the rearrangement of the presynaptic intramembrane particles induced by potassium stimulation. The action of botulinum neurotoxin suggests that the intramembrane particle rearrangement is related to the acetylcholine secretion induced by potassium stimulation in synaptosomes isolated from the electric organ of Torpedo marmorata.
Resumo:
The nucleoid-associated proteins Hha and YdgT repress the expression of the toxin α-hemolysin. An Escherichia coli mutant lacking these proteins overexpresses the toxin α-hemolysin encoded in the multicopy recombinant plasmid pANN202-312R. Unexpectedly, we could observe that this mutant generated clones that no further produced hemolysin (Hly-). Generation of Hly- clones was dependent upon the presence in the culture medium of the antibiotic kanamycin (km), a marker of the hha allele (hha::Tn5). Detailed analysis of different Hly- clones evidenced that recombination between partial IS91 sequences that flank the hly operon had occurred. A fluctuation test evidenced that the presence of km in the culture medium was underlying the generation of these clones. A decrease of the km concentration from 25 mg/l to 12.5 mg/l abolished the appearance of Hly- derivatives. We considered as a working hypothesis that, when producing high levels of the toxin (combination of the hha ydgT mutations with the presence of the multicopy hemolytic plasmid pANN202-312R), the concentration of km of 25 mg/l resulted subinhibitory and stimulated the recombination between adjacent IS91 flanking sequences. To further test this hypothesis, we analyzed the effect of subinhibitory km concentrations in the wild type E. coli strain MG1655 harboring the parental low copy number plasmid pHly152. At a km concentration of 5 mg/l, subinhibitory for strain MG1655 (pHly152), generation of Hly- clones could be readily detected. Similar results were also obtained when, instead of km, ampicillin was used. IS91 is flanking several virulence determinants in different enteric bacterial pathogenic strains from E. coli and Shigella. The results presented here evidence that stress generated by exposure to subinhibitory antibiotic concentrations may result in rearrangements of the bacterial genome. Whereas some of these rearrangements may be deleterious, others may generate genotypes with increased virulence, which may resume infection.
Resumo:
Syntaxin 1 and synaptosome-associated protein of 25 kD (SNAP-25) are neuronal plasmalemma proteins that appear to be essential for exocytosis of synaptic vesicles (SVs). Both proteins form a complex with synaptobrevin, an intrinsic membrane protein of SVs. This binding is thought to be responsible for vesicle docking and apparently precedes membrane fusion. According to the current concept, syntaxin 1 and SNAP-25 are members of larger protein families, collectively designated as target-SNAP receptors (t-SNAREs), whose specific localization to subcellular membranes define where transport vesicles bind and fuse. Here we demonstrate that major pools of syntaxin 1 and SNAP-25 recycle with SVs. Both proteins cofractionate with SVs and clathrin-coated vesicles upon subcellular fractionation. Using recombinant proteins as standards for quantitation, we found that syntaxin 1 and SNAP-25 each comprise approximately 3% of the total protein in highly purified SVs. Thus, both proteins are significant components of SVs although less abundant than synaptobrevin (8.7% of the total protein). Immunoisolation of vesicles using synaptophysin and syntaxin specific antibodies revealed that most SVs contain syntaxin 1. The widespread distribution of both syntaxin 1 and SNAP-25 on SVs was further confirmed by immunogold electron microscopy. Botulinum neurotoxin C1, a toxin that blocks exocytosis by proteolyzing syntaxin 1, preferentially cleaves vesicular syntaxin 1. We conclude that t-SNAREs participate in SV recycling in what may be functionally distinct forms.
Resumo:
El problema de hiperhidrosis afecta al 0,5% de la población, y puede causar considerable estrés emocional, dificultando en ocasiones la vida personal, laboral y social del paciente, llevándole, por ejemplo, a evitar un acto como dar la mano o quitarse los zapatos en público. Por otra parte, el excesivo sudor puede ocasionar maceración cutánea, acrocianosis, queratoderma e incluso deshidratación. La forma más frecuente de hiperhidrosis es la idiopática y en el 60% de los casos afecta a palmas y plantas de los pies. En este artículo presentamos la aplicación del tratamiento con la toxina butolínica tipo A.
Resumo:
Previous studies in young rats reported the impact of cocoa intake on healthy immune status and allow suggesting it may have a role in the prevention of some immune-mediated diseases. The aim of this study was to ascertain the effect of a cocoa diet in a model of allergy in young rats. Three-week-old Brown Norway rats were immunized by i.p. injection of ovalbumin (OVA) with alum as adjuvant and Bordetella pertussis toxin. During the next 4 weeks rats received either a cocoa diet (containing 0.2% polyphenols, w/w) or a standard diet. Animals fed a standard diet showed high concentrations of anti-OVA IgG1, IgG2a, IgG2b and high anti-OVA IgE titres, which is the antibody involved in allergic response. In contrast, animals fed a cocoa diet showed significantly lower concentrations of anti-OVA IgG1 and IgG2a antibodies. Interestingly, the cocoa diet prevented anti-OVA IgE synthesis and decreased total serum IgE concentration. Analysis of cytokine production in lymph node cells at the end of the study revealed that, in this compartment, the cocoa diet decreased the tumor necrosis factor (TNF) - alpha and the interleukin (IL) -10 secretion but not IL-4 production. In conclusion, a cocoa-enriched diet in young rats produces an immunomodulatory effect that prevents anti-allergen IgE synthesis, suggesting a potential role for cocoa flavonoids in the prevention or treatment of allergic diseases.
Resumo:
A number of neurotoxic chemicals induce accumulation of neurofilaments in axonal swellings that appear at varying distances from the cell body. This pathology is associated with axonal degeneration of different degrees. The clinical manifestation is most commonly that of a mixed motor-sensory peripheral axonopathy with a disto-proximal pattern of progression, as in cases of chronic exposure to n-hexane and carbon disulphide. It has been demonstrated that protein adduct formation is a primary molecular mechanism of toxicity in these axonopathies, but how this mechanism leads to neurofilament accumulation and axonal degeneration remains unclear. Furthermore, little is known regarding the mechanisms of neurofilamentous axonopathy caused by 3,3′-iminodipropionitrile, an experimental toxin that induces proximal axon swelling that is strikingly similar to that found in early amyotrophic lateral sclerosis. Here, we review the available data and main hypotheses regarding the toxic axonopathies and compare them with the current knowledge of the biological basis of neurofilament transport. We also review recent studies addressing the question of how these axonopathies may cause axonal degeneration. Understanding the mechanisms underlying the toxic axonopathies may provide insight into the relationship between neurofilament behaviour and axonal degeneration, hopefully enabling the identification of new targets for therapeutic intervention. Because neurofilament abnormalities are a common feature of many neurodegenerative diseases, advances in this area may have a wider impact beyond toxicological significance
Resumo:
The action of botulinum neurotoxin on acetylcholine release, and on the structural changes at the presynaptic membrane associated with the transmitter release,was studied by using a subcellular fraction of cholinergic nerve terminals (synaptosomes) isolated from the Torpedo electric organ. Acetylcholine and ATP release were continuously monitored by chemiluminescent methods.To catch the membrane morphological changes, the quick-freezing method was applied. Our results show that botulinum neurotoxin inhibits the release of acetylcholine from these isolated nerve terminals in a dose-dependent manner, whereas ATP release is not affected. The maximal inhibition (70%) is achieved at neurotoxin concentrations as low as 125 pM with an incubation time of 6 min. This effect is not linked to an alteration of the integrity of the synaptosomes since, after poisoning by botulinum neurotoxin type A, they show a nonmodified occluded lactate dehydrogenase activity. Moreover, membrane potential is not altered by the toxin with respect to the control, either in resting condition or after potassium depolarization. In addition to acetylcholine release inhibition, botulinum neurotoxin blocks the rearrangement of the presynaptic intramembrane particles induced by potassium stimulation. The action of botulinum neurotoxin suggests that the intramembrane particle rearrangement is related to the acetylcholine secretion induced by potassium stimulation in synaptosomes isolated from the electric organ of Torpedo marmorata.