72 resultados para Rigid body mechanics
Resumo:
A polarizable quantum mechanics and molecular mechanics model has been extended to account for the difference between the macroscopic electric field and the actual electric field felt by the solute molecule. This enables the calculation of effective microscopic properties which can be related to macroscopic susceptibilities directly comparable with experimental results. By seperating the discrete local field into two distinct contribution we define two different microscopic properties, the so-called solute and effective properties. The solute properties account for the pure solvent effects, i.e., effects even when the macroscopic electric field is zero, and the effective properties account for both the pure solvent effects and the effect from the induced dipoles in the solvent due to the macroscopic electric field. We present results for the linear and nonlinear polarizabilities of water and acetonitrile both in the gas phase and in the liquid phase. For all the properties we find that the pure solvent effect increases the properties whereas the induced electric field decreases the properties. Furthermore, we present results for the refractive index, third-harmonic generation (THG), and electric field induced second-harmonic generation (EFISH) for liquid water and acetonitrile. We find in general good agreement between the calculated and experimental results for the refractive index and the THG susceptibility. For the EFISH susceptibility, however, the difference between experiment and theory is larger since the orientational effect arising from the static electric field is not accurately described
Resumo:
We have reported in a variety of mammalian cells the reversible formation of a filamentous actin (F-actin)-enriched aggresome generated by the actin toxin jasplakinolide (Lázaro-Diéguez et al., J Cell Sci 2008; 121:1415-25). Notably, this F-actin aggresome (FAG) resembles in many aspects the pathological Hirano body, which frequently appears in some diseases such as Alzheimer's and alcoholism. Using selective inhibitors, we examined the molecular and subcellular mechanisms that participate in the clearance of the FAG. Chaperones, microtubules, proteasomes and autophagosomes all actively participate to eliminate the FAG. Here we compile and compare these results and discuss the involvement of each process. Because of its simplicity and high reproducibility, our cellular model could help to test pharmacological agents designed to interfere with the mechanisms involved in the clearance of intracellular bodies and, in particular, of those enriched in F-actin.
Resumo:
Caveolins are a crucial component of caveolae but have also been localized to the Golgi complex, and, under some experimental conditions, to lipid bodies (LBs). The physiological relevance and dynamics of LB association remain unclear. We now show that endogenous caveolin-1 and caveolin-2 redistribute to LBs in lipid loaded A431 and FRT cells. Association with LBs is regulated and reversible; removal of fatty acids causes caveolin to rapidly leave the lipid body. We also show by subcellular fractionation, light and electron microscopy that during the first hours of liver regeneration, caveolins show a dramatic redistribution from the cell surface to the newly formed LBs. At later stages of the regeneration process (when LBs are still abundant), the levels of caveolins in LBs decrease dramatically. As a model system to study association of caveolins with LBs we have used brefeldin A (BFA). BFA causes rapid redistribution of endogenous caveolins to LBs and this association was reversed upon BFA washout. Finally, we have used a dominant negative LB-associated caveolin mutant (cavDGV) to study LB formation and to examine its effect on LB function. We now show that the cavDGV mutant inhibits microtubule-dependent LB motility and blocks the reversal of lipid accumulation in LBs.
Resumo:
The forced oscillation technique (FOT) is a method for non-invasively assessing respiratory mechanics that is applicable both in paralysed and non-paralysed patients. As the FOT requires a minimal modification of the conventional ventilation setting and does not interfere with the ventilation protocol, the technique is potentially useful to monitor patient mechanics during invasive and noninvasive ventilation. FOT allows the assessment of the respiratory system linearity by measuring resistance and reactance at different lung volumes or end-expiratory pressures. Moreover, FOT allows the physician to track the changes in patient mechanics along the ventilation cycle. Applying FOT at different frequencies may allow the physician to interpret patient mechanics in terms of models with pathophysiological interest. The current methodological and technical experience make possible the implementation of portable and compact computerised FOT systems specifically addressed to its application in the mechanical ventilation setting.
Resumo:
Delta isobar components in the nuclear many-body wave function are investigated for the deuteron, light nuclei (16O), and infinite nuclear matter within the framework of the coupled-cluster theory. The predictions derived for various realistic models of the baryon-baryon interaction are compared to each other. These include local (V28) and nonlocal meson exchange potentials (Bonn2000) but also a model recently derived by the Salamanca group accounting for quark degrees of freedom. The characteristic differences which are obtained for the NDelta and Delta Delta correlation functions are related to the approximation made in deriving the matrix elements for the baryon-baryon interaction.
Resumo:
Thomas-Fermi theory is developed to evaluate nuclear matrix elements averaged on the energy shell, on the basis of independent particle Hamiltonians. One- and two-body matrix elements are compared with the quantal results, and it is demonstrated that the semiclassical matrix elements, as function of energy, well pass through the average of the scattered quantum values. For the one-body matrix elements it is shown how the Thomas-Fermi approach can be projected on good parity and also on good angular momentum. For the two-body case, the pairing matrix elements are considered explicitly.
Resumo:
Realistic nucleon-nucleon interactions induce correlations to the nuclear many-body system, which lead to a fragmentation of the single-particle strength over a wide range of energies and momenta. We address the question of how this fragmentation affects the thermodynamical properties of nuclear matter. In particular, we show that the entropy can be computed with the help of a spectral function, which can be evaluated in terms of the self-energy obtained in the self-consistent Green's function approach. Results for the density and temperature dependences of the entropy per particle for symmetric nuclear matter are presented and compared to the results of lowest order finite-temperature Brueckner-Hartree-Fock calculations. The effects of correlations on the calculated entropy are small, if the appropriate quasiparticle approximation is used. The results demonstrate the thermodynamical consistency of the self-consistent T-matrix approximation for the evaluation of the Green's functions.
Resumo:
The existence of a liquid-gas phase transition for hot nuclear systems at subsaturation densities is a well-established prediction of finite-temperature nuclear many-body theory. In this paper, we discuss for the first time the properties of such a phase transition for homogeneous nuclear matter within the self-consistent Green's function approach. We find a substantial decrease of the critical temperature with respect to the Brueckner-Hartree-Fock approximation. Even within the same approximation, the use of two different realistic nucleon-nucleon interactions gives rise to large differences in the properties of the critical point.
Resumo:
The energy and structure of dilute hard- and soft-sphere Bose gases are systematically studied in the framework of several many-body approaches, such as the variational correlated theory, the Bogoliubov model, and the uniform limit approximation, valid in the weak-interaction regime. When possible, the results are compared with the exact diffusion Monte Carlo ones. Jastrow-type correlation provides a good description of the systems, both hard- and soft-spheres, if the hypernetted chain energy functional is freely minimized and the resulting Euler equation is solved. The study of the soft-sphere potentials confirms the appearance of a dependence of the energy on the shape of the potential at gas paremeter values of x~0.001. For quantities other than the energy, such as the radial distribution functions and the momentum distributions, the dependence appears at any value of x. The occurrence of a maximum in the radial distribution function, in the momentum distribution, and in the excitation spectrum is a natural effect of the correlations when x increases. The asymptotic behaviors of the functions characterizing the structure of the systems are also investigated. The uniform limit approach is very easy to implement and provides a good description of the soft-sphere gas. Its reliability improves when the interaction weakens.
Resumo:
The extended Gaussian ensemble (EGE) is introduced as a generalization of the canonical ensemble. This ensemble is a further extension of the Gaussian ensemble introduced by Hetherington [J. Low Temp. Phys. 66, 145 (1987)]. The statistical mechanical formalism is derived both from the analysis of the system attached to a finite reservoir and from the maximum statistical entropy principle. The probability of each microstate depends on two parameters ß and ¿ which allow one to fix, independently, the mean energy of the system and the energy fluctuations, respectively. We establish the Legendre transform structure for the generalized thermodynamic potential and propose a stability criterion. We also compare the EGE probability distribution with the q-exponential distribution. As an example, an application to a system with few independent spins is presented.
Resumo:
We derive a Hamiltonian formulation for the three-dimensional formalism of predictive relativistic mechanics. This Hamiltonian structure is used to derive a set of dynamical equations describing the interaction among systems in perturbation theory.
Resumo:
We explicitly construct a closed system of differential equations describing the electromagnetic and gravitational interactions among bodies to first order in the coupling constants, retaining terms up to order c-2. The Breit and Barker and O'Connell Hamiltonians are recovered by means of a coordinate transformation. The method used throws light on the meaning of these coordinates.
Resumo:
We compute up to and including all the c-2 terms in the dynamical equations for extended bodies interacting through electromagnetic, gravitational, or short-range fields. We show that these equations can be reduced to those of point particles with intrinsic angular momentum assuming spherical symmetry.
Resumo:
We continue our study of classical mechanics using the methods of quantum mechanics. A Hilbert space is introduced, new conservation laws deduced, and the possibility of representing by new methods the many body classical problem discussed.
Resumo:
In this paper we consider a general action principle for mechanics written by means of the elements of a Lie algebra. We study the physical reasons why we have to choose precisely a Lie algebra to write the action principle. By means of such an action principle we work out the equations of motion and a technique to evaluate perturbations in a general mechanics that is equivalent to a general interaction picture. Classical or quantum mechanics come out as particular cases when we make realizations of the Lie algebra by derivations into the algebra of products of functions or operators, respectively. Later on we develop in particular the applications of the action principle to classical and quantum mechanics, seeing that in this last case it agrees with Schwinger's action principle. The main contribution of this paper is to introduce a perturbation theory and an interaction picture of classical mechanics on the same footing as in quantum mechanics.