61 resultados para RAT VAS-DEFERENS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using isolated, in situ, single-pass perfused rat livers, incubations of freshly isolated hepatocytes, and sinusoidal membrane-enriched vesicles, we and others have shown the saturability of transport (efflux) of hepatic glutathione (GSH). These observations have implicated a carrier mechanism. Our present studies were designed to provide further evidence in support of a carrier mechanism for hepatic GSH efflux by demonstrating competition by liver-specific ligands which are taken up by hepatocytes. Perfusing livers with different substances, we found that: (a) sulfobromophthalein-GSH (BSP-GSH) had a dose-dependent and fully reversible inhibitory effect on GSH efflux, while GSH alone did not have any effect; (b) taurocholate had no inhibitory effect; (c) all of the organic anions studied, i.e., BSP, rose bengal, indocyanine green, and unconjugated bilirubin (UCB), manifested potent, dose-dependent inhibitory effects, with absence of toxic effects and complete reversibility of inhibition in the case of UCB. The inhibitory effects of UCB could be overcome partially by raising (CoCl2-induced) hepatic GSH concentration. Because of the physiological importance of UCB, we conducted a detailed study of its inhibitory kinetics in the isolated hepatocyte model in the range of circulating concentrations of UCB. Studies with Cl- -free media, to inhibit the uptake of UCB by hepatocytes, showed that the inhibition of GSH efflux by UCB is apparently from inside the cell. This point was confirmed by showing that the inhibition is overcome only when bilirubin-loaded cells are cleared of bilirubin (incubation with 5% bovine serum albumin). Using Gunn rat hepatocytes and purified bilirubin mono- and diglucuronides, we found that both UCB and glucuronide forms of bilirubin inhibit GSH efflux in a dose-dependent manner. We conclude that the organic anions, although taken up by a mechanism independent of GSH, may competitively inhibit the carrier for GSH efflux from inside the hepatocyte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic ethanol feeding selectively impairs the translocation of cytosol GSH into the mitochondrial matrix. Since ethanol-induced liver cell injury is preferentially localized in the centrilobular area, we examined the hepatic acinar distribution of mitochondrial GSH transport in ethanol-fed rats. Enriched periportal (PP) and perivenous (PV) hepatocytes from pair- and ethanol-fed rats were prepared as well as mitochondria from these cells. The mitochondrial pool size of GSH was decreased in both PP and PV cells from ethanol-fed rats either as expressed per 10(6) cells or per microliter of mitochondrial matrix volume. The rate of reaccumulation of mitochondrial GSH and the linear relationship of mitochondrial to cytosol GSH from ethanol-fed mitochondria were lower for both PP and PV cells, effects observed more prominently in the PV cells. Mitochondrial functional integrity was lower in both PP and PV ethanol-fed rats, which was associated with decreased cellular ATP levels and mitochondrial membrane potential, effects which were greater in the PV cells. Mitochondrial GSH depletion by ethanol feeding preceded the onset of functional changes in mitochondria, suggesting that mitochondrial GSH is critical in maintaining a functionally competent organelle and that the greater depletion of mitochondrial GSH by ethanol feeding in PV cells could contribute to the pathogenesis of alcoholic liver disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the Xenopus oocyte expression system, we have previously identified an approximately 4-kb fraction of mRNA from rat liver that expresses sulfobromophthalein-glutathione (BSP-GSH)-insensitive reduced glutathione (GSH) transport (Fernandez-Checa, J., J. R. Yi, C. Garcia-Ruiz, Z. Knezic, S. Tahara, and N. Kaplowitz. 1993. J. Biol. Chem. 268:2324-2328). Starting with a cDNA library constructed from this fraction, we have now isolated a single clone that expresses GSH transporter activity. The cDNA for the rat canalicular GSH transporter (RcGshT) is 4.05 kb with an open reading frame of 2,505 nucleotides encoding for a polypeptide of 835 amino acids (95,785 daltons). No identifiable homologies were found in searching various databases. An approximately 96-kD protein is generated in in vitro translation of cRNA for RcGshT. Northern blot analysis reveals a single 4-kb transcript in liver, kidney, intestine, lung, and brain. The abundance of mRNA for RcGshT in rat liver increased 3, 6, and 12 h after a single dose of phenobarbital. Insensitivity to BSP-GSH and induction by phenobarbital, unique characteristics of canalicular GSH secretion, suggest that RcGshT encodes for the canalicular GSH transporter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND A previous study showed that the glucocorticoid dexamethasone, at doses of 100 ¿g/kg and above, inhibited leucocyte adhesion to rat mesenteric postcapillary venules activated with interleukin 1ß (IL-1ß), as assessed by videomicroscopy. AIMS To identify whether the adhesion molecule, intercellular adhesion molecule 1 (ICAM-1), or the chemokine KC could be targeted by the steroid to mediate its antiadhesive effect. METHODS Rat mesenteries were treated with IL-1ß (20 ng intraperitoneally) and the extent of leucocyte adhesion measured at two and four hours using intravital microscopy. Rats were treated with dexamethasone, and passively immunised against ICAM-1 or KC. Endogenous expression of these two mediators was validated by immunohistochemistry, ELISA, and the injection of specific radiolabelled antibodies. RESULTS Dexamethasone greatly reduced IL-1ß induced leucocyte adhesion, endothelial expression of ICAM-1 in the postcapillary venule, and release of the mast cell derived chemokine KC. Injection of specific antibodies to the latter mediators was also extremely effective in downregulating (>80%) IL-1ß induced leucocyte adhesion. CONCLUSIONS Induction by IL-1ß of endogenous ICAM-1 and KC contributes to leucocyte adhesion to inflamed mesenteric vessels. Without excluding other possible mediators, these data clearly show that dexamethasone interferes with ICAM-1 expression and KC release from mast cells, resulting in suppression of leucocyte accumulation in the bowel wall, which is a prominent feature of several gastrointestinal pathologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The combination of oleoyl-estrone (OE) and a selective b3-adrenergic agonist (B3A; CL316,243) treatment in rats results in a profound and rapid wasting of body reserves (lipid). Methods: In the present study we investigated the effect of OE (oral gavage) and/or B3A (subcutaneous constant infusion) administration for 10 days to overweight male rats, compared with controls, on three distinct white adipose tissue (WAT) sites: subcutaneous inguinal, retroperitoneal and epididymal. Tissue weight, DNA (and, from these values cellularity), cAMP content and the expression of several key energy handling metabolism and control genes were analyzed and computed in relation to the whole site mass. Results: Both OE and B3A significantly decreased WAT mass, with no loss of DNA (cell numbers). OE decreased and B3A increased cAMP. Gene expression patterns were markedly different for OE and B3A. OE tended to decrease expression of most genes studied, with no changes (versus controls) of lipolytic but decrease of lipogenic enzyme genes. The effects of B3A were widely different, with a generalized increase in the expression of most genes, including the adrenergic receptors, and, especially the uncoupling protein UCP1. Discussion: OE and B3A, elicit widely different responses in WAT gene expression, end producing similar effects, such as shrinking of WAT, loss of fat, maintenance of cell numbers. OE acted essentially on the balance of lipolysislipogenesis and the blocking of the uptake of substrates; its decrease of synthesis favouring lipolysis. B3A induced a shotgun increase in the expression of most regulatory systems in the adipocyte, an effect that in the end favoured again the loss of lipid; this barely selective increase probably produces inefficiency, which coupled with the increase in UCP1 expression may help WAT to waste energy through thermogenesis. Conclusions: There were considerable differences in the responses of the three WAT sites. OE in general lowered gene expression and stealthily induced a substrate imbalance. B3A increasing the expression of most genes enhanced energy waste through inefficiency rather than through specific pathway activation. There was not a synergistic effect between OE and B3A in WAT, but their combined action increased WAT energy waste.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amino acid composition of the protein from three strains of rat (Wistar, Zucker lean and Zucker obese), subjected to reference and high-fat diets has been used to determine the mean empirical formula, molecular weight and N content of whole-rat protein. The combined whole protein of the rat was uniform for the six experimental groups, containing an estimate of 17.3% N and a mean aminoacyl residue molecular weight of 103.7. This suggests that the appropriate protein factor for the calculation of rat protein from its N content should be 5.77 instead of the classical 6.25. In addition, an estimate of the size of the non-protein N mass in the whole rat gave a figure in the range of 5.5 % of all N. The combination of the two calculations gives a protein factor of 5.5 for the conversion of total N into rat protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The blood flow, PO2, pH and PCO2 have been estimated in portal and suprahepatic veins as well as in hepatic artery of fed and overnight starved rats given an oral glucose load. From these data the net intestinal, hepatic and splanchnic balances for oxygen and bicarbonate were calculated. The oxygen consumption of the intact animal has also been measured under comparable conditions. 2. The direct utilization of oxygen balances as energy equivalents when establishing the contribution of energy metabolism of liver and intestine to the overall energy expenses of the rat, has been found to be incorrect, since it incorporates the intrinsic error of interorgan proton transfer through bicarbonate. Liver and intestine produced high net bicarbonate balances in all situations tested, implying the elimination (by means of oxidative pathways, i.e. consuming additional oxygen) of high amounts of H+ generated with bicarbonate. The equivalence in energy output of the oxygen balances was then corrected for bicarbonate production to 11-54% lower values. 3. Intestine and liver consume a high proportion of available oxygen, about one-half in basal (fed or starved) conditions and about one-third after gavage, the intestine consumption being about 15% in all situations tested and the liver decreasing its oxygen consumption with gavage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Short-term OE (oleoyl-estrone) treatment causes significant decreases in rat weight mainly due to adipose tissue loss. The aim of this work was to determine if OE treatment affects the expression of genes that regulate lipid metabolism in white adipose tissue. Results: Gene expression in adipose tissue from female treated rats (48 hours) was analysed by hybridization to cDNA arrays and levels of specific mRNAs were determined by real-time PCR. Treatment with OE decreased the expression of 232 genes and up-regulated 75 other genes in mesenteric white adipose tissue. The use of real-time PCR validate that, in mesenteric white adipose tissue, mRNA levels for Lipoprotein Lipase (LPL) were decreased by 52%, those of Fatty Acid Synthase (FAS) by 95%, those of Hormone Sensible Lipase (HSL) by 32%, those of Acetyl CoA Carboxylase (ACC) by 92%, those of Carnitine Palmitoyltransferase 1b (CPT1b) by 45%, and those of Fatty Acid Transport Protein 1 (FATP1) and Adipocyte Fatty Acid Binding Protein (FABP4) by 52% and 49%, respectively. Conversely, Tumour Necrosis Factor (TNF¿) values showed overexpression (198%). Conclusion: Short-term treatment with OE affects adipose tissue capacity to extract fatty acids from lipoproteins and to deal with fatty acid transport and metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zucker lean and obese rats were injected under pentobarbital anesthesia with 125I-labeled insulin; at timed intervals from 30 to 120 sec, blood samples were extracted and used for the estimation of insulin levels by RIA. A group of rats from each series was maintained under a constant infusion of noradrenaline. For each insulin determination, a duplicate blood sample containing the same amount of insulin as that used in the RIA, but without the radioactive label, was used as a blank for insulin measurement. The radioactivity in these tubes was then used for the measurement of insulin label per ml blood. From plasma label decay curves and insulin concentrations, the insulin pool size, half-life, and rate of degradation were calculated. Obese rats had higher insulin levels (2.43 nM) and showed less effect of noradrenaline than their lean counterparts, in which insulin distribution volume shrank with noradrenaline treatment. The half-life of plasma insulin was similar in all groups (range, 226-314 sec). Pool size and overall degradation rates were higher in obese (198 femtokatals) than in lean rats (28 femtokatals). It is postulated that obese rats synthesize and cleave much more insulin than lean controls despite their higher circulating levels of insulin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White adipose tissue (WAT) is a disperse organ acting as energy storage depot and endocrine/paracrine controlling factor in the management of energy availability and inflammation. WAT sites response under energy-related stress is not uniform. In the present study we have analyzed how different WAT sites respond to limited food restriction as a way to better understand the role of WAT in the pathogenesis of the metabolic syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Current methodology of gene expression analysis limits the possibilities of comparison between cells/tissues of organs in which cell size and/or number changes as a consequence of the study (e.g. starvation). A method relating the abundance of specific mRNA copies per cell may allow direct comparison or different organs and/or changing physiological conditions. Methods: With a number of selected genes, we analysed the relationship of the number of bases and the fluorescence recorded at a present level using cDNA standards. A lineal relationship was found between the final number of bases and the length of the transcript. The constants of this equation and those of the relationship between fluorescence and number of bases in cDNA were determined and a general equation linking the length of the transcript and the initial number of copies of mRNA was deduced for a given pre-established fluorescence setting. This allowed the calculation of the concentration of the corresponding mRNAs per g of tissue. The inclusion of tissue RNA and the DNA content per cell, allowed the calculation of the mRNA copies per cell. Results: The application of this procedure to six genes: Arbp, cyclophilin, ChREBP, T4 deiodinase 2, acetyl-CoA carboxylase 1 and IRS-1, in liver and retroperitoneal adipose tissue of food-restricted rats allowed precise measures of their changes irrespective of the shrinking of the tissue, the loss of cells or changes in cell size, factors that deeply complicate the comparison between changing tissue conditions. The percentage results obtained with the present methods were essentially the same obtained with the delta-delta procedure and with individual cDNA standard curve quantitative RT-PCR estimation. Conclusion: The method presented allows the comparison (i.e. as copies of mRNA per cell) between different genes and tissues, establishing the degree of abundance of the different molecular species tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fate of a small oral dose of protein given to overnight-starved rats was studied. After 3 h, 62 per cent of the protein amino acids had been absorbed. Most of the absorbed N went into the bloodstream through the portal in the form of amino acids, but urea and ammonia were also present. About one-quarter of all absorbed N was carried as lymph amino acids. The liver was able to take all portal free ammonia and a large proportion of portal amino acids, releasing urea. The hepatic N balance was negative, indicating active proteolysis and net loss of liver protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transforming growth factor alpha (TGF alpha) is a polypeptide, which binds to the epidermal growth factor receptor to carry out its function related to cell proliferation and differentiation. The ultrastructural localisation of TGF alpha was studied in both the proximal and the distal colon. The columnar cells, lining the surface epithelium of the proximal colon, showed a strong immunoreactivity in the polyribosomes and in the interdigitations of the lateral membrane. The columnar cells of the crypts and the goblet cells in both the proximal and the distal colon showed the immunostaining in the cis and trans cisternae of the Golgi apparatus. TGF alpha seems to be processed differently in the surface columnar cells and in the crypt columnar cells and goblet cells. Moreover, it probably has different roles in proliferation and differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In mammals, glucose transporter (GLUT)-4 plays an important role in glucose homeostasis mediating insulin action to increase glucose uptake in insulin-responsive tissues. In the basal state, GLUT4 is located in intracellular compartments and upon insulin stimulation is recruited to the plasma membrane, allowing glucose entry into the cell. Compared with mammals, fish are less efficient restoring plasma glucose after dietary or exogenous glucose administration. Recently our group cloned a GLUT4-homolog in skeletal muscle from brown trout (btGLUT4) that differs in protein motifs believed to be important for endocytosis and sorting of mammalian GLUT4. To study the traffic of btGLUT4, we generated a stable L6 muscle cell line overexpressing myc-tagged btGLUT4 (btGLUT4myc). Insulin stimulated btGLUT4myc recruitment to the cell surface, although to a lesser extent than rat-GLUT4myc, and enhanced glucose uptake. Interestingly, btGLUT4myc showed a higher steady-state level at the cell surface under basal conditions than rat-GLUT4myc due to a higher rate of recycling of btGLUT4myc and not to a slower endocytic rate, compared with rat-GLUT4myc. Furthermore, unlike rat-GLUT4myc, btGLUT4myc had a diffuse distribution throughout the cytoplasm of L6 myoblasts. In primary brown trout skeletal muscle cells, insulin also promoted the translocation of endogenous btGLUT4 to the plasma membrane and enhanced glucose transport. Moreover, btGLUT4 exhibited a diffuse intracellular localization in unstimulated trout myocytes. Our data suggest that btGLUT4 is subjected to a different intracellular traffic from rat-GLUT4 and may explain the relative glucose intolerance observed in fish.