20 resultados para Q-switching
Resumo:
There are few clinical data on the combination abacavir/lamivudine plus raltegravir. We compared the outcomes of patients from the SPIRAL trial receiving either abacavir/lamivudine or tenofovir/emtricitabine at baseline who had taken at least one dose of either raltegravir or ritonavir-boosted protease inhibitors. For the purpose of this analysis, treatment failure was defined as virological failure (confirmed HIV-1 RNA ≥50 copies/ml) or discontinuation of abacavir/lamivudine or tenofovir/emtricitabine because of adverse events, consent withdrawal, or lost to follow-up. There were 143 (72.59%) patients with tenofovir/emtricitabine and 54 (27.41%) with abacavir/lamivudine. In the raltegravir group, there were three (11.11%) treatment failures with abacavir/lamivudine and eight (10.96%) with tenofovir/emtricitabine (estimated difference 0.15%; 95% CI -17.90 to 11.6). In the ritonavir-boosted protease inhibitor group, there were four (14.81%) treatment failures with abacavir/lamivudine and 12 (17.14%) with tenofovir/emtricitabine (estimated difference -2.33%; 95% CI -16.10 to 16.70). Triglycerides decreased and HDL cholesterol increased through the study more pronouncedly with abacavir/lamivudine than with tenofovir/emtricitabine and differences in the total-to-HDL cholesterol ratio between both combinations of nucleoside reverse transcriptase inhibitors (NRTIs) tended to be higher in the raltegravir group, although differences at 48 weeks were not significant. While no patient discontinued abacavir/lamivudine due to adverse events, four (2.80%) patients (all in the ritonavir-boosted protease inhibitor group) discontinued tenofovir/emtricitabine because of adverse events (p=0.2744). The results of this analysis do not suggest that outcomes of abacavir/lamivudine are worse than those of tenofovir/emtricitabine when combined with raltegravir in virologically suppressed HIV-infected adults.
Resumo:
Several studies have suggested a bilingual advantage in executive functions, presumably due to bilinguals' massive practice with language switching that requires executive resources, but the results are still somewhat controversial. Previous studies are also plagued by the inherent limitations of a natural groups design where the participant groups are bound to differ in many ways in addition to the variable used to classify them. In an attempt to introduce a complementary analysis approach, we employed multiple regression to study whether the performance of 30- to 75-year-old FinnishSwedish bilinguals (N = 38) on tasks measuring different executive functions (inhibition, updating, and set shifting) could be predicted by the frequency of language switches in everyday life (as measured by a language switching questionnaire), L2 age of acquisition, or by the self-estimated degree of use of both languages in everyday life. Most consistent effects were found for the set shifting task where a higher rate of everyday language switches was related to a smaller mixing cost in errors. Mixing cost is thought to reflect top-down management of competing task sets, thus resembling the bilingual situation where decisions of which language to use has to be made in each conversation. These findings provide additional support to the idea that some executive functions in bilinguals are affected by a lifelong experience in language switching and, perhaps even more importantly, suggest a complementary approach to the study of this issue.
Resumo:
Language switching is omnipresent in bilingual individuals. In fact, the ability to switch languages (code switching) is a very fast, efficient, and flexible process that seems to be a fundamental aspect of bilingual language processing. In this study, we aimed to characterize psychometrically self-perceived individual differences in language switching and to create a reliable measure of this behavioral pattern by introducing a bilingual switching questionnaire. As a working hypothesis based on the previous literature about code switching, we decomposed language switching into four constructs: (i) L1 switching tendencies (the tendency to switch to L1; L1-switch); (ii) L2 switching tendencies (L2-switch); (iii) contextual switch, which indexes the frequency of switches usually triggered by a particular situation, topic, or environment; and (iv) unintended switch, which measures the lack of intention and awareness of the language switches. A total of 582 SpanishCatalan bilingual university students were studied. Twelve items were selected (three for each construct). The correlation matrix was factor-analyzed using minimum rank factor analysis followed by oblique direct oblimin rotation. The overall proportion of common variance explained by the four extracted factors was 0.86. Finally, to assess the external validity of the individual differences scored with the new questionnaire, we evaluated the correlations between these measures and several psychometric (language proficiency) and behavioral measures related to cognitive and attentional control. The present study highlights the importance of evaluating individual differences in language switching using self-assessment instruments when studying the interface between cognitive control and bilingualism.
Resumo:
We show how the familiar phenomenological way of combining the Q2 (photon virtuality) and t (squared momentum transfer) dependences of the scattering amplitude in Deeply Virtual Compton Scattering (DVCS) [1, 2] and Vector Meson Production (VMP) [2] processes can be understood in an off-mass-shell generalization of dual amplitudes with Mandelstam analyticity [3]. By comparing different approaches, we managed also to constrain the numerical values of the free parameters.
Resumo:
BACKGROUND: With many atypical antipsychotics now available in the market, it has become a common clinical practice to switch between atypical agents as a means of achieving the best clinical outcomes. This study aimed to examine the impact of switching from olanzapine to risperidone and vice versa on clinical status and tolerability outcomes in outpatients with schizophrenia in a naturalistic setting. METHODS: W-SOHO was a 3-year observational study that involved over 17,000 outpatients with schizophrenia from 37 countries worldwide. The present post hoc study focused on the subgroup of patients who started taking olanzapine at baseline and subsequently made the first switch to risperidone (n=162) and vice versa (n=136). Clinical status was assessed at the visit when the first switch was made (i.e. before switching) and after switching. Logistic regression models examined the impact of medication switch on tolerability outcomes, and linear regression models assessed the association between medication switch and change in the Clinical Global Impression-Schizophrenia (CGI-SCH) overall score or change in weight. In addition, Kaplan-Meier survival curves and Cox-proportional hazards models were used to analyze the time to medication switch as well as time to relapse (symptom worsening as assessed by the CGI-SCH scale or hospitalization). RESULTS: 48% and 39% of patients switching to olanzapine and risperidone, respectively, remained on the medication without further switches (p=0.019). Patients switching to olanzapine were significantly less likely to experience relapse (hazard ratio: 3.43, 95% CI: 1.43, 8.26), extrapyramidal symptoms (odds ratio [OR]: 4.02, 95% CI: 1.49, 10.89) and amenorrhea/galactorrhea (OR: 8.99, 95% CI: 2.30, 35.13). No significant difference in weight change was, however, found between the two groups. While the CGI-SCH overall score improved in both groups after switching, there was a significantly greater change in those who switched to olanzapine (difference of 0.29 points, p=0.013). CONCLUSION: Our study showed that patients who switched from risperidone to olanzapine were likely to experience a more favorable treatment course than those who switched from olanzapine to risperidone. Given the nature of observational study design and small sample size, additional studies are warranted.