17 resultados para Proton Conductivity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this research is to explore the variability on the soil thermal conductivity -λ- after a prescribe fire, and to assess the effects of the ashes on the heat transfer once it"s were incorporated into the soil matrix. Sampling plot was located in the Montgrí Massif (NE of Spain). A set of 42 soil samples between surface and 5 cm depth was collected before and after the fire. To characterize the soil chemical and physical variables were analyzed. To determine the vari-ability on the soil λ a dry-out curve per scenario (before and after fire) was determined. SoilRho® method based on ASTM D-5334-08 which was validated by LabFerrer was used. Soil thermal conductivity has shown changes in their values. Indeed, in all moisture scenarios the values of soil λ decreased after soil was burnt. The critical point in the rela-tionship ϴ (λ) for the soil after fire which always was stronger than soil before to be burnt. Soil with"white" ashes showed a high thermal conductivity. An X-Ray diffractometry analysis allowed to clarify and to verify these results. To sum up, we could say that thermal conductivity presents changes when the scenario changes, i.e. before and after to be burnt. On the other hand, the volume of ashes incorporated on the soil increased the differences between no burnt and burnt soil, showing even some improvements on the heat transfer when water content started to govern the process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron scattering on unstable nuclei is planned in future facilities of the GSI and RIKEN upgrades. Motivated by this fact, we study theoretical predictions for elastic electron scattering in the N=82, N=50, and N=14 isotonic chains from very proton-deficient to very proton-rich isotones. We compute the scattering observables by performing Dirac partial-wave calculations. The charge density of the nucleus is obtained with a covariant nuclear mean-field model that accounts for the low-energy electromagnetic structure of the nucleon. For the discussion of the dependence of scattering observables at low-momentum transfer on the gross properties of the charge density, we fit Helm model distributions to the self-consistent mean-field densities. We find that the changes shown by the electric charge form factor along each isotonic chain are strongly correlated with the underlying proton shell structure of the isotones. We conclude that elastic electron scattering experiments on isotones can provide valuable information about the filling order and occupation of the single-particle levels of protons.