263 resultados para Particles (Nuclear physics).
Resumo:
The Garvey-Kelson relations (GKRs) are algebraic expressions originally developed to predict nuclear masses. In this letter we show that the GKRs provide a fruitful framework for the prediction of other physical observables that also display a slowly-varying dynamics. Based on this concept, we extend the GKRs to the study of nuclear charge radii. The GKRs are tested on 455 out of the approximately 800 nuclei whose charge radius is experimentally known. We find a rms deviation between the GK predictions and the experimental values of only 0.01 fm. This should be contrasted against some of the most successful microscopic models that yield rms deviations almost three times as large. Predictions -with reliable uncertainties- are provided for 116 nuclei whose charge radius is presently unknown.
Resumo:
The properties of spin polarized pure neutron matter and symmetric nuclear matter are studied using the finite range simple effective interaction, upon its parametrization revisited. Out of the total twelve parameters involved, we now determine ten of them from nuclear matter, against the nine parameters in our earlier calculation, as required in order to have predictions in both spin polarized nuclear matter and finite nuclei in unique manner being free from uncertainty found using the earlier parametrization. The information on the effective mass splitting in polarized neutron matter of the microscopic calculations is used to constrain the one more parameter, that was earlier determined from finite nucleus, and in doing so the quality of the description of finite nuclei is not compromised. The interaction with the new set of parameters is used to study the possibilities of ferromagnetic and antiferromagnetic transitions in completely polarized symmetric nuclear matter. Emphasis is given to analyze the results analytically, as far as possible, to elucidate the role of the interaction parameters involved in the predictions.
Resumo:
The interplay between Rashba, Dresselhaus, and Zeeman interactions in a quantum well submitted to an external magnetic field is studied by means of an accurate analytical solution of the Hamiltonian, including electron-electron interactions in a sum-rule approach. This solution allows us to discuss the influence of the spin-orbit coupling on some relevant quantities that have been measured in inelastic light scattering and electron-spin resonance experiments on quantum wells. In particular, we have evaluated the spin-orbit contribution to the spin splitting of the Landau levels and to the splitting of charge- and spin-density excitations. We also discuss how the spin-orbit effects change if the applied magnetic field is tilted with respect to the direction perpendicular to the quantum well.
Resumo:
The fast simultaneous hadronization and chemical freeze-out of supercooled quark-gluon plasma, created in relativistic heavy ion collisions, can lead to the reheating of the expanding matter and to the change in a collective flow profile. We use the assumption of statistical nature of the hadronization process, and study quantitatively the freeze-out in the framework of hydrodynamical Bjorken model with different simple quark-gluon plasma equations of state.
Resumo:
We make a thorough study of the process of three-body kaon absorption in nuclei, in connection with a recent FINUDA experiment which claims the existence of a deeply bound kaonic state from the observation of a peak in the Lambdad invariant mass distribution following K- absorption on 6Li. We show that the peak is naturally explained in terms of K- absorption from three nucleons leaving the rest as spectators. We can also reproduce all the other observables measured in the same experiment and used to support the hypothesis of the deeply bound kaon state. Our study also reveals interesting aspects of kaon absorption in nuclei, a process that must be understood in order to make progress in the search for K- deeply bound states in nuclei.
Resumo:
Deuteron properties are studied using the one-pion exchange potential truncated at a radius R, with a constant interior potential. The spectrum of bound states and their properties are put in evidence. We discuss the relation of this model to more realistic models of the nucleon-nucleon interaction.
Resumo:
We develop an efficient technique to compute anomalies in supersymmetric theories by combining the so-called nonlocal regularization method and superspace techniques. To illustrate the method we apply it to a four-dimensional toy model with potentially anomalous N=1 supersymmetry and prove explicitly that in this model all the candidate supersymmetry anomalies have vanishing coefficients at the one-loop level.
Resumo:
We consider the two Higgs doublet model extension of the standard model in the limit where all physical scalar particles are very heavy, too heavy, in fact, to be experimentally produced in forthcoming experiments. The symmetry-breaking sector can thus be described by an effective chiral Lagrangian. We obtain the values of the coefficients of the O(p4) operators relevant to the oblique corrections and investigate to what extent some nondecoupling effects may remain at low energies. A comparison with recent CERN LEP data shows that this model is indistinguishable from the standard model with one doublet and with a heavy Higgs boson, unless the scalar mass splittings are large.