20 resultados para Particle Number Concentration
Resumo:
La distribución del número y del volumen de partículas, y la eficiencia de eliminación de las partículas y los sólidos en suspensión de diferentes efluentes y sus filtrados, fueron analizadas para estudiar si los filtros más usuales en los sistemas de riego localizado eliminan las partículas que pueden obturar los goteros. En la mayoría de los efluentes y filtrados fue mínimo el número de partículas con diámetros superiores a 20 μm. Sin embargo, al analizar la distribución del volumen de las partículas, en los filtrados aparecieron partículas de dimensiones superiores a la luz de los filtros de anillas y malla, siendo el filtro de arena el que retuvo las partículas de mayor diámetro. La eficiencia de los filtros para retener partículas se debió más al tipo de efluente que al filtro. Se verificó también que la distribución del número de partículas sigue una relación de tipo potencial. Analizando el exponente β de la ley potencial, se halló que los filtros no modificaron significativamente la distribución del número de partículas de los efluentes.
Resumo:
Intravascular brachytherapy with beta sources has become a useful technique to prevent restenosis after cardiovascular intervention. In particular, the Beta-Cath high-dose-rate system, manufactured by Novoste Corporation, is a commercially available 90Sr 90Y source for intravascular brachytherapy that is achieving widespread use. Its dosimetric characterization has attracted considerable attention in recent years. Unfortunately, the short ranges of the emitted beta particles and the associated large dose gradients make experimental measurements particularly difficult. This circumstance has motivated the appearance of a number of papers addressing the characterization of this source by means of Monte Carlo simulation techniques.
Resumo:
Viruses are among the most important pathogens present in water contaminated with feces or urine and represent a serious risk to human health. Four procedures for concentrating viruses from sewage have been compared in this work, three of which were developed in the present study. Viruses were quantified using PCR techniques. According to statistical analysis and the sensitivity to detect human adenoviruses (HAdV), JC polyomaviruses (JCPyV) and noroviruses genogroup II (NoV GGII): (i) a new procedure (elution and skimmed-milk flocculation procedure (ESMP)) based on the elution of the viruses with glycine-alkaline buffer followed by organic flocculation with skimmed-milk was found to be the most efficient method when compared to (ii) ultrafiltration and glycine-alkaline elution, (iii) a lyophilization-based method and (iv) ultracentrifugation and glycine-alkaline elution. Through the analysis of replicate sewage samples, ESMP showed reproducible results with a coefficient of variation (CV) of 16% for HAdV, 12% for JCPyV and 17% for NoV GGII. Using spiked samples, the viral recoveries were estimated at 30-95% for HAdV, 55-90% for JCPyV and 45-50% for NoV GGII. ESMP was validated in a field study using twelve 24-h composite sewage samples collected in an urban sewage treatment plant in the North of Spain that reported 100% positive samples with mean values of HAdV, JCPyV and NoV GGII similar to those observed in other studies. Although all of the methods compared in this work yield consistently high values of virus detection and recovery in urban sewage, some require expensive laboratory equipment. ESMP is an effective low-cost procedure which allows a large number of samples to be processed simultaneously and is easily standardizable for its performance in a routine laboratory working in water monitoring. Moreover, in the present study, a CV was applied and proposed as a parameter to evaluate and compare the methods for detecting viruses in sewage samples.
Resumo:
Viruses are among the most important pathogens present in water contaminated with feces or urine and represent a serious risk to human health. Four procedures for concentrating viruses from sewage have been compared in this work, three of which were developed in the present study. Viruses were quantified using PCR techniques. According to statistical analysis and the sensitivity to detect human adenoviruses (HAdV), JC polyomaviruses (JCPyV) and noroviruses genogroup II (NoV GGII): (i) a new procedure (elution and skimmed-milk flocculation procedure (ESMP)) based on the elution of the viruses with glycine-alkaline buffer followed by organic flocculation with skimmed-milk was found to be the most efficient method when compared to (ii) ultrafiltration and glycine-alkaline elution, (iii) a lyophilization-based method and (iv) ultracentrifugation and glycine-alkaline elution. Through the analysis of replicate sewage samples, ESMP showed reproducible results with a coefficient of variation (CV) of 16% for HAdV, 12% for JCPyV and 17% for NoV GGII. Using spiked samples, the viral recoveries were estimated at 30-95% for HAdV, 55-90% for JCPyV and 45-50% for NoV GGII. ESMP was validated in a field study using twelve 24-h composite sewage samples collected in an urban sewage treatment plant in the North of Spain that reported 100% positive samples with mean values of HAdV, JCPyV and NoV GGII similar to those observed in other studies. Although all of the methods compared in this work yield consistently high values of virus detection and recovery in urban sewage, some require expensive laboratory equipment. ESMP is an effective low-cost procedure which allows a large number of samples to be processed simultaneously and is easily standardizable for its performance in a routine laboratory working in water monitoring. Moreover, in the present study, a CV was applied and proposed as a parameter to evaluate and compare the methods for detecting viruses in sewage samples.
Resumo:
We analyze the influence of the single-particle structure on the neutron density distribution and the neutron skin in Ca, Ni, Zr, Sn, and Pb isotopes. The nucleon density distributions are calculated in the Hartree-Fock+BCS approach with the SLy4 Skyrme force. A close correlation is found between the quantum numbers of the valence neutrons and the changes in the position and the diffuseness of the nuclear surface, which in turn affect the neutron skin thickness. Neutrons in the valence orbitals with low principal quantum number and high angular momentum mainly displace the position of the neutron surface outwards, while neutrons with high principal quantum number and low angular momentum basically increase the diffuseness of the neutron surface. The impact of the valence shell neutrons on the tail of the neutron density distribution is discussed.