135 resultados para Panel data probit model
Resumo:
While general equilibrium theories of trade stress the role of third-country effects, little work has been done in the empirical foreign direct investment (FDI) literature to test such spatial linkages. This paper aims to provide further insights into long-run determinants of Spanish FDI by considering not only bilateral but also spatially weighted third-country determinants. The few studies carried out so far have focused on FDI flows in a limited number of countries. However, Spanish FDI outflows have risen dramatically since 1995 and today account for a substantial part of global FDI. Therefore, we estimate recently developed Spatial Panel Data models by Maximum Likelihood (ML) procedures for Spanish outflows (1993-2004) to top-50 host countries. After controlling for unobservable effects, we find that spatial interdependence matters and provide evidence consistent with New Economic Geography (NEG) theories of agglomeration, mainly due to complex (vertical) FDI motivations. Spatial Error Models estimations also provide illuminating results regarding the transmission mechanism of shocks.
Resumo:
We empirically investigate the determinants of EMU sovereign bond yield spreads with respect to the German bund. Using panel data techniques, we examine the role of a wide set of potential drivers. To our knowledge, this paper presents one of the most exhaustive compilations of the variables used in the literature to study the behaviour of sovereign yield spreads and, in particular, to gauge the effect on these spreads of changes in market sentiment and risk aversion. We use a sample of both central and peripheral countries from January 1999 to December 2012 and assess whether there were significant changes after the outbreak of the euro area debt crisis. Our results suggest that the rise in sovereign risk in central countries can only be partially explained by the evolution of local macroeconomic variables in those countries.
Resumo:
We empirically investigate the determinants of EMU sovereign bond yield spreads with respect to the German bund. Using panel data techniques, we examine the role of a wide set of potential drivers. To our knowledge, this paper presents one of the most exhaustive compilations of the variables used in the literature to study the behaviour of sovereign yield spreads and, in particular, to gauge the effect on these spreads of changes in market sentiment and risk aversion. We use a sample of both central and peripheral countries from January 1999 to December 2012 and assess whether there were significant changes after the outbreak of the euro area debt crisis. Our results suggest that the rise in sovereign risk in central countries can only be partially explained by the evolution of local macroeconomic variables in those countries.
Resumo:
This paper re-examines the null of stationary of real exchange rate for a panel of seventeen OECD developed countries during the post-Bretton Woods era. Our analysis simultaneously considers both the presence of cross-section dependence and multiple structural breaks that have not received much attention in previous panel methods of long-run PPP. Empirical results indicate that there is little evidence in favor of PPP hypothesis when the analysis does not account for structural breaks. This conclusion is reversed when structural breaks are considered in computation of the panel statistics. We also compute point estimates of half-life separately for idiosyncratic and common factor components and find that it is always below one year.
Resumo:
The use of tolls is being widespread around the world. Its ability to fund infrastructure projects and to solve budget constraints have been the main rationale behind its renewed interest. However, less attention has been payed to the safety effects derived from this policy in a moment of increasing concern on road fatalities. Pricing best infrastructures shifts some drivers onto worse alternative roads usually not prepared to receive high traffic in comparable safety standards. In this paper we provide evidence of the existence of this perverse consequence by using an international European panel in a two way fixed effects estimation.
Resumo:
The stochastic convergence amongst Mexican Federal entities is analyzed in panel data framework. The joint consideration of cross-section dependence and multiple structural breaks is required to ensure that the statistical inference is based on statistics with good statistical properties. Once these features are accounted for, evidence in favour of stochastic convergence is found. Since stochastic convergence is a necessary, yet insufficient condition for convergence as predicted by economic growth models, the paper also investigates whether-convergence process has taken place. We found that the Mexican states have followed either heterogeneous convergence patterns or divergence process throughout the analyzed period.
Resumo:
Membrane bioreactors (MBRs) are a combination of activated sludge bioreactors and membrane filtration, enabling high quality effluent with a small footprint. However, they can be beset by fouling, which causes an increase in transmembrane pressure (TMP). Modelling and simulation of changes in TMP could be useful to describe fouling through the identification of the most relevant operating conditions. Using experimental data from a MBR pilot plant operated for 462days, two different models were developed: a deterministic model using activated sludge model n°2d (ASM2d) for the biological component and a resistance in-series model for the filtration component as well as a data-driven model based on multivariable regressions. Once validated, these models were used to describe membrane fouling (as changes in TMP over time) under different operating conditions. The deterministic model performed better at higher temperatures (>20°C), constant operating conditions (DO set-point, membrane air-flow, pH and ORP), and high mixed liquor suspended solids (>6.9gL-1) and flux changes. At low pH (<7) or periods with higher pH changes, the data-driven model was more accurate. Changes in the DO set-point of the aerobic reactor that affected the TMP were also better described by the data-driven model. By combining the use of both models, a better description of fouling can be achieved under different operating conditions
Resumo:
Consider a model with parameter phi, and an auxiliary model with parameter theta. Let phi be a randomly sampled from a given density over the known parameter space. Monte Carlo methods can be used to draw simulated data and compute the corresponding estimate of theta, say theta_tilde. A large set of tuples (phi, theta_tilde) can be generated in this manner. Nonparametric methods may be use to fit the function E(phi|theta_tilde=a), using these tuples. It is proposed to estimate phi using the fitted E(phi|theta_tilde=theta_hat), where theta_hat is the auxiliary estimate, using the real sample data. This is a consistent and asymptotically normally distributed estimator, under certain assumptions. Monte Carlo results for dynamic panel data and vector autoregressions show that this estimator can have very attractive small sample properties. Confidence intervals can be constructed using the quantiles of the phi for which theta_tilde is close to theta_hat. Such confidence intervals are found to have very accurate coverage.
Resumo:
This paper explores the factors that determine firm’s R&D cooperation with different partners, paying special attention on the role of tertiary education (degree and PhDs level) in facilitating the connection between the firms and the to scientific bodies (technology centres, public research centres and universities). Here, we attempt to answer two questions. First, are innovative firms that carry out internal and external R&D activities more likely to cooperate on R&D projects with other partners? Second, do Spanish innovative firms with a high participation of researchers with degrees or PhDs tend to cooperate more with scientific partners? To answer both questions we apply a three-dimensional approach on a firm level Panel Data with a sample of 4.998 manufacturing and services Spanish firms. First, we run a complementary test between external R&D acquisition and skilled research workers and find that firms which carry out external R&D activities obtain a greater return on R&D cooperation when they have skilled workers in R&D, especially in high-tech manufactures and KIS services. Second, we carry out a 2-step tobit model to estimate, in the first stage, the determinants that explain whether Spanish innovative firms cooperate or not; and in the second stage the factors that affect the choice of partners. And third, we apply an ordered probit model to test the marginal effects of explanatory variables on the different partners. Here we contrast some of the most interesting empirical hypotheses of previous studies, and which emphasize the role of employees with degrees and PhDs in facilitating cooperative R&D between firms and scientific partners.
Resumo:
This paper explores the factors that determine firm’s R&D cooperation with different partners, paying special attention on the role of tertiary education (degree and PhDs level) in facilitating the connection between the firms and the to scientific bodies (technology centres, public research centres and universities). Here, we attempt to answer two questions. First, are innovative firms that carry out internal and external R&D activities more likely to cooperate on R&D projects with other partners? Second, do Spanish innovative firms with a high participation of researchers with degrees or PhDs tend to cooperate more with scientific partners? To answer both questions we apply a three-dimensional approach on a firm level Panel Data with a sample of 4.998 manufacturing and services Spanish firms. First, we run a complementary test between external R&D acquisition and skilled research workers and find that firms which carry out external R&D activities obtain a greater return on R&D cooperation when they have skilled workers in R&D, especially in high-tech manufactures and KIS services. Second, we carry out a 2-step tobit model to estimate, in the first stage, the determinants that explain whether Spanish innovative firms cooperate or not; and in the second stage the factors that affect the choice of partners. And third, we apply an ordered probit model to test the marginal effects of explanatory variables on the different partners. Here we contrast some of the most interesting empirical hypotheses of previous studies, and which emphasize the role of employees with degrees and PhDs in facilitating cooperative R&D between firms and scientific partners. JEL classification: O31, O33, O38. Key words: Determinants R&D cooperation, industry-university flows, PhD research workers.
Resumo:
This paper explores how absorptive capacity affects the innovative performance and productivity dynamics of Spanish firms. A firm’s efficiency levels are measured using two variables: the labour productivity and the Total Factor Productivity (TFP). The theoretical framework is based on the seminal contributions of Cohen and Levinthal (1989, 1990) regarding absorptive capacity; and the applied framework is based on the four-stage structural model proposed by Crépon, Duguet and Mairesse (1998) for setting the determinants of R&D, the effects of R&D activities on innovation outputs, and the impacts of innovation on firm productivity. The present study uses a twostage structural model. In the first stage, a probit estimation is used to investigate how the sources of R&D, the absorptive capacity and a vector of the firm’s individual features influence the firm’s likelihood of developing innovations in products or processes. In the second phase, a quantile regression is used to analyze the effect of R&D sources, absorptive capacity and firm characteristics on productivity. This method shows the elasticity of each exogenous variable on productivity according to the firms’ levels of efficiency, and thus allows us to distinguish between firms that are close to the technological frontier and those that are further away from it. We used extensive firm-level panel data from 5,575 firms for the 2004-2009 period. The results show that the internal absorptive capacity has a strong impact on the productivity of firms, whereas the role of external absorptive capacity differs according to nature of the each industry and according the distance of firms from the technological frontier. Key words: R&D sources, innovation strategies, absorptive capacity, technological distance, quantile regression.
Resumo:
Theoretical and empirical approaches have stressed the existence of financial constraints in innovative activities of firms. This paper analyses the role of financial obstacles on the likelihood of abandoning an innovation project. Although a large number of innovation projects are abandoned before their completion, the empirical evidence has focused on the determinants of innovation while failed projects have received little attention. Our analysis differentiates between internal and external barriers on the probability of abandoning a project and we examine whether the effects are different depending on the stage of the innovation process. In the empirical analysis carried out for a panel data of potential innovative Spanish firms for the period 2004-2010, we use a bivariate probit model to take into account the simultaneity of financial constraints and the decision to abandon an innovation project. Our results show that financial constraints most affect the probability of abandoning an innovation project during the concept stage and that low-technological manufacturing and non-KIS service sectors are more sensitive to financial constraints.
Resumo:
Theoretical and empirical approaches have stressed the existence of financial constraints in innovative activities of firms. This paper analyses the role of financial obstacles on the likelihood of abandoning an innovation project. Although a large number of innovation projects are abandoned before their completion, the empirical evidence has focused on the determinants of innovation while failed projects have received little attention. Our analysis differentiates between internal and external barriers on the probability of abandoning a project and we examine whether the effects are different depending on the stage of the innovation process. In the empirical analysis carried out for a panel data of potential innovative Spanish firms for the period 2004-2010, we use a bivariate probit model to take into account the simultaneity of financial constraints and the decision to abandon an innovation project. Our results show that financial constraints most affect the probability of abandoning an innovation project during the concept stage and that low-technological manufacturing and non-KIS service sectors are more sensitive to financial constraints. Keywords: barriers to innovation, failure of innovation projects, financial constraints JEL Classifications: O31, D21
Resumo:
The aim of this paper is twofold. First, we study the determinants of economic growth among a wide set of potential variables for the Spanish provinces (NUTS3). Among others, we include various types of private, public and human capital in the group of growth factors. Also,we analyse whether Spanish provinces have converged in economic terms in recent decades. Thesecond objective is to obtain cross-section and panel data parameter estimates that are robustto model speci¯cation. For this purpose, we use a Bayesian Model Averaging (BMA) approach.Bayesian methodology constructs parameter estimates as a weighted average of linear regression estimates for every possible combination of included variables. The weight of each regression estimate is given by the posterior probability of each model.
Resumo:
The aim of this paper is twofold. First, we study the determinants of economic growth among a wide set of potential variables for the Spanish provinces (NUTS3). Among others, we include various types of private, public and human capital in the group of growth factors. Also,we analyse whether Spanish provinces have converged in economic terms in recent decades. Thesecond objective is to obtain cross-section and panel data parameter estimates that are robustto model speci¯cation. For this purpose, we use a Bayesian Model Averaging (BMA) approach.Bayesian methodology constructs parameter estimates as a weighted average of linear regression estimates for every possible combination of included variables. The weight of each regression estimate is given by the posterior probability of each model.