25 resultados para PHYSIOLOGICAL PROFILES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of caponisation on fat composition by parts (wing, breast, thigh, and drumstick) and tissues (skin, subcutaneous adipose tissue, intermuscular adipose tissue and muscle) was examined in the present study and fatty acid profiles of abdominal fat and edible meat by parts and tissue components were determined. The sample was made up of twenty-eight castrated and twenty male Penedesenca Negra chicks reared under free-range conditions and slaughtered at 28 wk of age; the birds were castrated at four or eight weeks. Caponisation significantly increased (P < 0.01) the chemical fat content in all parts (16.31% to 37.98% in breast; 21.98% to 34.13% in wing; 21.09% to 49.57% in thigh; 14.33% to 24.82% in drumstick) and led to minor modifications in fat haracteristics, particularly in the thigh and the drumstick, where the unsaturated vs. saturated fatty acid ratio increased from 1.31 to 1.76 ( P < 0.01) and from 1.48 to 2.07 (P < 0.01), respectively. Delaying the age of castration from 4 to 8 weeks increased this ratio by 0.35 in the edible meat. Even though the profile of the abdominal fat is less saturated in capons, all changes occurring on fat quality after caponisation indicate that increased fatness after castration does not imply worse fat nutritional properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Selection for increasing intramuscular fat content would definitively improve the palatability and juiciness of pig meat as well as the sensorial and organoleptic properties of cured products. However, evidences obtained in human and model organisms suggest that high levels of intramuscular fat might alter muscle lipid and carbohydrate metabolism. We have analysed this issue by determining the transcriptomic profiles of Duroc pigs with divergent phenotypes for 13 fatness traits. The strong aptitude of Duroc pigs to have high levels of intramuscular fat makes them a valuable model to analyse the mechanisms that regulate muscle lipid metabolism, an issue with evident implications in the elucidation of the genetic basis of human metabolic diseases such as obesity and insulin resistance. RESULTS: Muscle gene expression profiles of 68 Duroc pigs belonging to two groups (HIGH and LOW) with extreme phenotypes for lipid deposition and composition traits have been analysed. Microarray and quantitative PCR analysis showed that genes related to fatty acid uptake, lipogenesis and triacylglycerol synthesis were upregulated in the muscle tissue of HIGH pigs, which are fatter and have higher amounts of intramuscular fat than their LOW counterparts. Paradoxically, lipolytic genes also showed increased mRNA levels in the HIGH group suggesting the existence of a cycle where triacylglycerols are continuously synthesized and degraded. Several genes related to the insulin-signalling pathway, that is usually impaired in obese humans, were also upregulated. Finally, genes related to antigen-processing and presentation were downregulated in the HIGH group. CONCLUSION: Our data suggest that selection for increasing intramuscular fat content in pigs would lead to a shift but not a disruption of the metabolic homeostasis of muscle cells. Future studies on the post-translational changes affecting protein activity or expression as well as information about protein location within the cell would be needed to to elucidate the effects of lipid deposition on muscle metabolism in pigs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal transduction systems mediate the response and adaptation of organisms to environmental changes. In prokaryotes, this signal transduction is often done through Two Component Systems (TCS). These TCS are phosphotransfer protein cascades, and in their prototypical form they are composed by a kinase that senses the environmental signals (SK) and by a response regulator (RR) that regulates the cellular response. This basic motif can be modified by the addition of a third protein that interacts either with the SK or the RR in a way that could change the dynamic response of the TCS module. In this work we aim at understanding the effect of such an additional protein (which we call ‘‘third component’’) on the functional properties of a prototypical TCS. To do so we build mathematical models of TCS with alternative designs for their interaction with that third component. These mathematical models are analyzed in order to identify the differences in dynamic behavior inherent to each design, with respect to functionally relevant properties such as sensitivity to changes in either the parameter values or the molecular concentrations, temporal responsiveness, possibility of multiple steady states, or stochastic fluctuations in the system. The differences are then correlated to the physiological requirements that impinge on the functioning of the TCS. This analysis sheds light on both, the dynamic behavior of synthetically designed TCS, and the conditions under which natural selection might favor each of the designs. We find that a third component that modulates SK activity increases the parameter space where a bistable response of the TCS module to signals is possible, if SK is monofunctional, but decreases it when the SK is bifunctional. The presence of a third component that modulates RR activity decreases the parameter space where a bistable response of the TCS module to signals is possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study that optimizes the ethanol production in the fermentation of Saccharomyces cerevisiae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for dealing with monotonicity constraints in optimal control problems is used to generalize some results in the context of monopoly theory, also extending the generalization to a large family of principal-agent programs. Our main conclusion is that many results on diverse economic topics, achieved under assumptions of continuity and piecewise differentiability in connection with the endogenous variables of the problem, still remain valid after replacing such assumptions by two minimal requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of this study was to replicate and extend previous results on subtypes of adolescents with substance use disorders (SUD), according to their Minnesota Multiphasic Personality Inventory for adolescents (MMPI-A) profiles. Sixty patients with SUD and psychiatric comorbidity (41.7% male, mean age = 15.9 years old) completed the MMPI-A, the Teen Addiction Severity Index (T-ASI), the Child Behaviour Checklist (CBCL), and were interviewed in order to determine DSMIV diagnoses and level of substance use. Mean MMPI-A personality profile showed moderate peaks in Psychopathic Deviate, Depression and Hysteria scales. Hierarchical cluster analysis revealed four profiles (acting-out, 35% of the sample; disorganized-conflictive, 15%; normative-impulsive, 15%; and deceptive-concealed, 35%). External correlates were found between cluster 1, CBCL externalizing symptoms at a clinical level and conduct disorders, and between cluster 2 and mixed CBCL internalized/externalized symptoms at a clinical level. Discriminant analysis showed that Depression, Psychopathic Deviate and Psychasthenia MMPI-A scales correctly classified 90% of the patients into the clusters obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of this study was to replicate and extend previous results on subtypes of adolescents with substance use disorders (SUD), according to their Minnesota Multiphasic Personality Inventory for adolescents (MMPI-A) profiles. Sixty patients with SUD and psychiatric comorbidity (41.7% male, mean age = 15.9 years old) completed the MMPI-A, the Teen Addiction Severity Index (T-ASI), the Child Behaviour Checklist (CBCL), and were interviewed in order to determine DSMIV diagnoses and level of substance use. Mean MMPI-A personality profile showed moderate peaks in Psychopathic Deviate, Depression and Hysteria scales. Hierarchical cluster analysis revealed four profiles (acting-out, 35% of the sample; disorganized-conflictive, 15%; normative-impulsive, 15%; and deceptive-concealed, 35%). External correlates were found between cluster 1, CBCL externalizing symptoms at a clinical level and conduct disorders, and between cluster 2 and mixed CBCL internalized/externalized symptoms at a clinical level. Discriminant analysis showed that Depression, Psychopathic Deviate and Psychasthenia MMPI-A scales correctly classified 90% of the patients into the clusters obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T-cell mediated immune response (CMI) hasbeen widely studied in relation to individual andfitness components in birds. However, few studieshave simultaneously examined individual and socialfactors and habitat-mediated variance in theimmunity of chicks and adults from the samepopulation and in the same breeding season. Weinvestigated ecological and physiological variancein CMI of male and female nestlings and adults in abreeding population of Cory's Shearwaters(Calonectrisdiomedea) in theMediterranean Sea. Explanatory variables includedindividual traits (body condition, carbon andnitrogen stable isotope ratios, plasma totalproteins, triglycerides, uric acid, osmolarity,β-hydroxy-butyrate, erythrocyte meancorpuscular diameter, hematocrit, andhemoglobin) and burrow traits(temperature, isolation, and physicalstructure). During incubation, immune responseof adult males was significantly greater than thatof females. Nestlings exhibited a lower immuneresponse than adults. Ecological and physiologicalfactors affecting immune response differed betweenadults and nestlings. General linear models showedthat immune response in adult males was positivelyassociated with burrow isolation, suggesting thatmales breeding at higher densities suffer immunesystem suppression. In contrast, immune response inchicks was positively associated with bodycondition and plasma triglyceride levels.Therefore, adult immune response appears to beassociated with social stress, whereas a trade-offbetween immune function and fasting capability mayexist for nestlings. Our results, and those fromprevious studies, provide support for anasymmetrical influence of ecological andphysiological factors on the health of differentage and sex groups within a population, and for theimportance of simultaneously considering individualand population characteristics in intraspecificstudies of immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T-cell mediated immune response (CMI) hasbeen widely studied in relation to individual andfitness components in birds. However, few studieshave simultaneously examined individual and socialfactors and habitat-mediated variance in theimmunity of chicks and adults from the samepopulation and in the same breeding season. Weinvestigated ecological and physiological variancein CMI of male and female nestlings and adults in abreeding population of Cory's Shearwaters(Calonectrisdiomedea) in theMediterranean Sea. Explanatory variables includedindividual traits (body condition, carbon andnitrogen stable isotope ratios, plasma totalproteins, triglycerides, uric acid, osmolarity,β-hydroxy-butyrate, erythrocyte meancorpuscular diameter, hematocrit, andhemoglobin) and burrow traits(temperature, isolation, and physicalstructure). During incubation, immune responseof adult males was significantly greater than thatof females. Nestlings exhibited a lower immuneresponse than adults. Ecological and physiologicalfactors affecting immune response differed betweenadults and nestlings. General linear models showedthat immune response in adult males was positivelyassociated with burrow isolation, suggesting thatmales breeding at higher densities suffer immunesystem suppression. In contrast, immune response inchicks was positively associated with bodycondition and plasma triglyceride levels.Therefore, adult immune response appears to beassociated with social stress, whereas a trade-offbetween immune function and fasting capability mayexist for nestlings. Our results, and those fromprevious studies, provide support for anasymmetrical influence of ecological andphysiological factors on the health of differentage and sex groups within a population, and for theimportance of simultaneously considering individualand population characteristics in intraspecificstudies of immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Insects respond to the spatial and temporal dynamics of a pheromone plume, which implies not only a strong response to"odor on", but also to"odor off". This requires mechanisms geared toward a fast signal termination. Several mechanisms may contribute to signal termination, among which odorant-degrading enzymes. These enzymes putatively play a role in signal dynamics by a rapid inactivation of odorants in the vicinity of the sensory receptors, although direct in vivo experimental evidences are lacking. Here we verified the role of an extracellular carboxylesterase, esterase-6 (Est-6), in the sensory physiological and behavioral dynamics of Drosophila melanogaster response to its pheromone, cis-vaccenyl acetate (cVA). Est-6 was previously linked to post-mating effects in the reproductive system of females. As Est-6 is also known to hydrolyze cVA in vitro and is expressed in the main olfactory organ, the antenna, we tested here its role in olfaction as a putative odorant-degrading enzyme. Results: We first confirm that Est-6 is highly expressed in olfactory sensilla, including cVA-sensitive sensilla, and we show that expression is likely associated with non-neuronal cells. Our electrophysiological approaches show that the dynamics of olfactory receptor neuron (ORN) responses is strongly influenced by Est-6, as in Est-6° null mutants (lacking the Est-6 gene) cVA-sensitive ORN showed increased firing rate and prolonged activity in response to cVA. Est-6° mutant males had a lower threshold of behavioral response to cVA, as revealed by the analysis of two cVAinduced behaviors. In particular, mutant males exhibited a strong decrease of male-male courtship, in association with a delay in courtship initiation. Conclusions: Our study presents evidence that Est-6 plays a role in the physiological and behavioral dynamics of sex pheromone response in Drosophila males and supports a role of Est-6 as an odorant-degrading enzyme (ODE) in male antennae. Our results also expand the role of Est-6 in Drosophila biology, from reproduction to olfaction, and highlight the role of ODEs in insect olfaction. Keywords: carboxylesterase, esterase 6, olfaction, pheromone, signal termination