32 resultados para PHLOEM-LIMITED BACTERIA
Resumo:
A diffusion-limited-aggregation (DLA) model with two components (A and B species) is presented to investigate the structure of the composite deposits. The sticking probability PAB (=PBA) between the different species is introduced into the original DLA model. By using computer simulation it is shown that various patterns are produced with varying the sticking probabilities PAB (=PBA) and PAA (= PBB), where PAA (=PBB) is the sticking probability between the same species. Segregated patterns can be analyzed under the condition PAB < PAA, assumed throughout the paper. With decreasing sticking probability PAB, a clustering of the same species occurs. With sufficiently small values of both sticking probabilities PAB and PAA, the deposit becomes dense and the segregated patterns of the composite deposit show a striped structure. The effect of the concentration on the pattern morphology is also shown.
Resumo:
The emergence of chirality in enantioselective autocatalysis for compounds unable to transform according to the Frank-like reaction network is discussed with respect to the controversial limited enantioselectivity (LES) model composed of coupled enantioselective and non-enantioselective autocatalyses. The LES model cannot lead to spontaneous mirror symmetry breaking (SMSB) either in closed systems with a homogeneous temperature distribution or in closed systems with a stationary non-uniform temperature distribution. However, simulations of chemical kinetics in a two-compartment model demonstrate that SMSB may occur if both autocatalytic reactions are spatially separated at different temperatures in different compartments but coupled under the action of a continuous internal flow. In such conditions, the system can evolve, for certain reaction and system parameters, toward a chiral stationary state; that is, the system is able to reach a bifurcation point leading to SMSB. Numerical simulations in which reasonable chemical parameters have been used suggest that an ade- quate scenario for such a SMSB would be that of abyssal hydrothermal vents, by virtue of the typical temper- ature gradients found there and the role of inorganic solids mediating chemical reactions in an enzyme-like role. Key Words: Homochirality Prebiotic chemistry.
Resumo:
Exchange of immature loggerhead sea turtles (Caretta caretta) between the northern and southern regions of the western Mediterranean was investigated using data obtained from several Spanish tagging programmes. Tagged turtles ranged in straight carapace length from 23.0 to 74.0 cm. Thirty-six turtles were recaptured after an average interval of 390.5±462.6 days (SD). As the mean dispersal distance (MDD) of a turtle population that spreads over the western Mediterranean would stabilize after 117 days (CI 95%: 98 to 149), two analyses were conducted that included data from turtles recaptured after 98 and 149 days respectively. In both analyses, turtles were recaptured more often than expected in the same region where they had been tagged. No difference was found in either of the two regions between the average distance between the capture and recapture locations and the expected MDD if the turtles were to remain in the region where they were first captured. Turtles recaptured after 15 and 25 days respectively were excluded from the analysis to ensure data independence. The overall evidence indicates that immature turtles exhibit strong site fidelity to certain areas and that there is a strong barrier to dispersal between the northern and southern parts of the western Mediterranean. Therefore, loggerhead turtles in the western Mediterranean should be split into at least two management units.
Resumo:
An effect of drift is investigated on the segregation pattern in diffusion-limited aggregation (DLA) with two components (A and B species). The sticking probability PAB (=PBA) between the different species is introduced into the DLA model with drift, where the sticking probability PAA (=PBB) between the same species equals 1. By using computer simulation it is found that the drift has an important effect on not only the morphology but also the segregation pattern. Under the drift and the small sticking probability, a characteristic pattern appears where elongated clusters of A species and of B species are periodically dispersed. The period decreases with increasing drift. The periodic structure of the deposits is characterized by an autocorrelation function. The shape of the cluster consisting of only A species (or B species) shows a vertically elongated filamentlike structure. Each cluster becomes vertically longer with decreasing sticking probability PAB. The segregation pattern is distinctly different from that with no drift and a small sticking probability PAA. The effect of the concentration on the segregation pattern is also shown.
Resumo:
In this review we highlight recent work that has increased our understanding of the distribution of Shiga toxin-converting phages that can be detected as free phage particles, independently of Shiga toxin-producing bacteria (STEC). Stx phages are a quite diverse group of temperate phages that can be found in their prophage state inserted within the STEC chromosome, but can also be found as phages released from the cell after activation of their lytic cycle. They have been detected in extraintestinal environments such as water polluted with feces from humans or animals, food samples or even in stool samples of healthy individuals. The high persistence of phages to several inactivation conditions makes them suitable candidates for the successful mobilization of stx genes, possibly resulting in the genes reaching a new bacterial genomic background by means of transduction, where ultimately they may be expressed, leading to Stx production. Besides the obvious fact that Stx phages circulating between bacteria can be, and probably are, involved in the emergence of new STEC strains, we review here other possible ways in which free Stx phages could interfere with the detection of STEC in a given sample by current laboratory methods and how to avoid such interference.
Resumo:
The emergence of chirality in enantioselective autocatalysis for compounds unable to transform according to the Frank-like reaction network is discussed with respect to the controversial limited enantioselectivity (LES) model composed of coupled enantioselective and non-enantioselective autocatalyses. The LES model cannot lead to spontaneous mirror symmetry breaking (SMSB) either in closed systems with a homogeneous temperature distribution or in closed systems with a stationary non-uniform temperature distribution. However, simulations of chemical kinetics in a two-compartment model demonstrate that SMSB may occur if both autocatalytic reactions are spatially separated at different temperatures in different compartments but coupled under the action of a continuous internal flow. In such conditions, the system can evolve, for certain reaction and system parameters, toward a chiral stationary state; that is, the system is able to reach a bifurcation point leading to SMSB. Numerical simulations in which reasonable chemical parameters have been used suggest that an adequate scenario for such a SMSB would be that of abyssal hydrothermal vents, by virtue of the typical temperature gradients found there and the role of inorganic solids mediating chemical reactions in an enzyme-like role.
Resumo:
Thiopeptides, or thiazolyl peptides, are a relatively new family of antibiotics that already counts with more than one hundred different entities. Although they are mainly isolated from soil bacteria, during the last decade, new members have been isolated from marine samples. Far from being limited to their innate antibacterial activity, thiopeptides have been found to possess a wide range of biological properties, including anticancer, antiplasmodial, immunosuppressive, etc. In spite of their ribosomal origin, these highly posttranslationally processed peptides have posed a fascinating synthetic challenge, prompting the development of various methodologies and strategies. Regardless of their limited solubility, intensive investigations are bringing thiopeptide derivatives closer to the clinic, where they are likely to show their veritable therapeutic potential.
Resumo:
Protein glycosylation had been considered as an eccentricity of a few bacteria. However, through advances in analytical methods and genome sequencing, it is now established that bacteria possess both N-linked and O-linked glycosylation pathways. Both glycosylation pathways can modify multiple proteins, flagellins from Archaea and Eubacteria being one of these. Flagella O-glycosylation has been demonstrated in many polar flagellins from Gram-negative bacteria and in only the Gram-positive genera Clostridium and Listeria. Furthermore, O-glycosylation has also been demonstrated in a limited number of lateral flagellins. In this work, we revised the current advances in flagellar glycosylation from Gram-negative bacteria, focusing on the structural diversity of glycans, the O-linked pathway and the biological function of flagella glycosylation.
Resumo:
Seabirds act as natural reservoirs to Lyme borreliosis spirochetes and may play a significant role in the global circulation of these pathogens. While Borrelia burgdorferi sensu lato (Bbsl) has been shown to occur in ticks collected from certain locations in the North Pacific, little is known about interspecific differences in exposure within the seabird communities of this region. We examined the prevalence of anti-Bbsl antibodies in 805 individuals of nine seabird species breeding across the North Pacific. Seroprevalence varied strongly among species and locations. Murres (Uria spp.) showed the highest antibody prevalence and may play a major role in facilitating Bbsl circulation at a worldwide scale. Other species showed little or no signs of exposure, despite being present in multispecific colonies with seropositive birds. Complex dynamics may be operating in this wide scale, natural hostparasite system, possibly mediated by the host immune system and host specialization of the tick vector.
Resumo:
Many Gram-negative, cold-adapted bacteria from the Antarctic environment produce large amounts of extracellular matter with potential biotechnological applications. Transmission electron microscopy (TEM) analysis after high-pressure freezing and freeze substitution (HPF-FS) showed that this extracellular matter is structurally complex, appearing around cells as a netlike mesh, and composed of an exopolymeric substance (EPS) containing large numbers of outer membrane vesicles (OMVs). Isolation, purification and protein profiling via 1D SDS-PAGE confirmed the outer membrane origin of these Antarctic bacteria OMVs. In an initial attempt to elucidate the role of OMVs in cold-adapted strains of Gram-negative bacteria, a proteomic analysis demonstrated that they were highly enriched in outer membrane proteins and periplasmic proteins associated with nutrient processing and transport, suggesting that the OMVs may be involved in nutrient sensing and bacterial survival. OMVs from Gram-negative bacteria are known to play a role in lateral DNA transfer, but the presence of DNA in these vesicles has remained difficult to explain. A structural study of Shewanella vesiculosa M7T using TEM and Cryo-TEM revealed that this Antarctic Gram-negative bacterium naturally releases conventional one-bilayer OMVs, together with a more complex type of OMV, previously undescribed, which on formation drags along inner membrane and cytoplasmic content and can therefore also entrap DNA.
Resumo:
Many Gram-negative, cold-adapted bacteria from the Antarctic environment produce large amounts of extracellular matter with potential biotechnological applications. Transmission electron microscopy (TEM) analysis after high-pressure freezing and freeze substitution (HPF-FS) showed that this extracellular matter is structurally complex, appearing around cells as a netlike mesh, and composed of an exopolymeric substance (EPS) containing large numbers of outer membrane vesicles (OMVs). Isolation, purification and protein profiling via 1D SDS-PAGE confirmed the outer membrane origin of these Antarctic bacteria OMVs. In an initial attempt to elucidate the role of OMVs in cold-adapted strains of Gram-negative bacteria, a proteomic analysis demonstrated that they were highly enriched in outer membrane proteins and periplasmic proteins associated with nutrient processing and transport, suggesting that the OMVs may be involved in nutrient sensing and bacterial survival. OMVs from Gram-negative bacteria are known to play a role in lateral DNA transfer, but the presence of DNA in these vesicles has remained difficult to explain. A structural study of Shewanella vesiculosa M7T using TEM and Cryo-TEM revealed that this Antarctic Gram-negative bacterium naturally releases conventional one-bilayer OMVs, together with a more complex type of OMV, previously undescribed, which on formation drags along inner membrane and cytoplasmic content and can therefore also entrap DNA.
Resumo:
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is considered a housekeeping protein that is present in virtually all organisms, where it performs metabolic functions essential for survival. GAPDH plays an essential role in the process of energy production, and is also involved in numerous biological processes. GAPDH belongs to a subset of proteins called moonlighting proteins, in which different functions are associated with a single polypeptide chain. The multifunctionality of GAPDH has been described in pathogenic and probiotic microorganisms, in mammals and in plants. In this review, we summarize the moonlighting role of GAPDH in bacteria.
Resumo:
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is considered a housekeeping protein that is present in virtually all organisms, where it performs metabolic functions essential for survival. GAPDH plays an essential role in the process of energy production, and is also involved in numerous biological processes. GAPDH belongs to a subset of proteins called moonlighting proteins, in which different functions are associated with a single polypeptide chain. The multifunctionality of GAPDH has been described in pathogenic and probiotic microorganisms, in mammals and in plants. In this review, we summarize the moonlighting role of GAPDH in bacteria.
Resumo:
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is considered a housekeeping protein that is present in virtually all organisms, where it performs metabolic functions essential for survival. GAPDH plays an essential role in the process of energy production, and is also involved in numerous biological processes. GAPDH belongs to a subset of proteins called moonlighting proteins, in which different functions are associated with a single polypeptide chain. The multifunctionality of GAPDH has been described in pathogenic and probiotic microorganisms, in mammals and in plants. In this review, we summarize the moonlighting role of GAPDH in bacteria.