20 resultados para PET Scan
Resumo:
Se describen los principios de la tomografía por emisión de positrones (PET) como procedimiento diagnóstico de reciente introducción en el campo de las Ciencias de la Salud. Las aplicaciones clínicas principales se dan en un grupo concreto de especialidades: la cardiología, neurología, psiquiatría y sobre todo la oncología. La tomografía por emisión de positrones es una técnica de diagnóstico por la imagen no invasiva de uso clínico. Se trata de una excelente herramienta para el estudio de la estadificación y la posible malignización de los tumores de cabeza y cuello, la detección de metástasis y linfoadenopatías no valorables clínicamente, así como para el diagnóstico de recidivas tumorales. El único trazador que tiene aplicación clínica es la fluor-desoxiglucosa- F18 o FDG. La PET detecta la intensa acumulación de FDG que se produce en los tumores malignos, debido al mayor índice glicolítico que tienen las células neoplásicas. Con la introducción de sistemas híbridos que combinan la tomografía computadorizada o la resonancia magnética con la tomografía por emisión de positrones, se está produciendo un importante avance en el diagnóstico y el seguimiento de la patología oncológica de cabeza y cuello.
Resumo:
La presente entrega de la serie de Nursing sobre las pruebas complementarias está dedicada a la tomografía por emisión de positrones o PET, acrónimo de positron emission tomography. La PET es una técnica de diagnóstico por la imagen de medicina nuclear en la cual se administra al paciente un radiofármaco emisor de positrones. Este radiofármaco se incorpora a los tejidos adecuados siguiendo una vía metabólica determinada. La radiactividad emitida por esos tejidos del paciente es detectable por los equipos PET y se obtienen imágenes que proporcionan una información funcional in vivo. El radiofármaco PET más habitual es un análogo de la glucosa que se llama F-18-fluordesoxiglucosa, conocido como FDG, el cual permite estudiar la actividad metabólica. La incorporación de la tomografía computarizada (TC) en el mismo equipo híbrido PET-TC permite obtener además la información anatómica del paciente. En el presente artículo se describen los fundamentos físicos y fisiológicos básicos de las exploraciones PET-TC con FDG en oncología, así como los procedimientos de enfermería necesarios para el cuidado del paciente y la correcta obtención de las imágenes.
Resumo:
La presente entrega de la serie de Nursing sobre las pruebas complementarias está dedicada a la tomografía por emisión de positrones o PET, acrónimo de positron emission tomography. La PET es una técnica de diagnóstico por la imagen de medicina nuclear en la cual se administra al paciente un radiofármaco emisor de positrones. Este radiofármaco se incorpora a los tejidos adecuados siguiendo una vía metabólica determinada. La radiactividad emitida por esos tejidos del paciente es detectable por los equipos PET y se obtienen imágenes que proporcionan una información funcional in vivo. El radiofármaco PET más habitual es un análogo de la glucosa que se llama F-18-fluordesoxiglucosa, conocido como FDG, el cual permite estudiar la actividad metabólica. La incorporación de la tomografía computarizada (TC) en el mismo equipo híbrido PET-TC permite obtener además la información anatómica del paciente. En el presente artículo se describen los fundamentos físicos y fisiológicos básicos de las exploraciones PET-TC con FDG en oncología, así como los procedimientos de enfermería necesarios para el cuidado del paciente y la correcta obtención de las imágenes.
Resumo:
This paper proposes a pose-based algorithm to solve the full SLAM problem for an autonomous underwater vehicle (AUV), navigating in an unknown and possibly unstructured environment. The technique incorporate probabilistic scan matching with range scans gathered from a mechanical scanning imaging sonar (MSIS) and the robot dead-reckoning displacements estimated from a Doppler velocity log (DVL) and a motion reference unit (MRU). The proposed method utilizes two extended Kalman filters (EKF). The first, estimates the local path travelled by the robot while grabbing the scan as well as its uncertainty and provides position estimates for correcting the distortions that the vehicle motion produces in the acoustic images. The second is an augment state EKF that estimates and keeps the registered scans poses. The raw data from the sensors are processed and fused in-line. No priory structural information or initial pose are considered. The algorithm has been tested on an AUV guided along a 600 m path within a marina environment, showing the viability of the proposed approach
Resumo:
Trabajo fin de grado acerca de la creación de una aplicación en Java EE para la localización de mascotas mediante el uso de reconocimiento facial en dispositivos móviles.