47 resultados para PATTERN-RECOGNITION RECEPTOR
Resumo:
This paper presents a pattern recognition method focused on paintings images. The purpose is construct a system able to recognize authors or art styles based on common elements of his work (here called patterns). The method is based on comparing images that contain the same or similar patterns. It uses different computer vision techniques, like SIFT and SURF, to describe the patterns in descriptors, K-Means to classify and simplify these descriptors, and RANSAC to determine and detect good results. The method are good to find patterns of known images but not so good if they are not.
Resumo:
Given a set of images of scenes containing different object categories (e.g. grass, roads) our objective is to discover these objects in each image, and to use this object occurrences to perform a scene classification (e.g. beach scene, mountain scene). We achieve this by using a supervised learning algorithm able to learn with few images to facilitate the user task. We use a probabilistic model to recognise the objects and further we classify the scene based on their object occurrences. Experimental results are shown and evaluated to prove the validity of our proposal. Object recognition performance is compared to the approaches of He et al. (2004) and Marti et al. (2001) using their own datasets. Furthermore an unsupervised method is implemented in order to evaluate the advantages and disadvantages of our supervised classification approach versus an unsupervised one
Resumo:
Given $n$ independent replicates of a jointly distributed pair $(X,Y)\in {\cal R}^d \times {\cal R}$, we wish to select from a fixed sequence of model classes ${\cal F}_1, {\cal F}_2, \ldots$ a deterministic prediction rule $f: {\cal R}^d \to {\cal R}$ whose risk is small. We investigate the possibility of empirically assessingthe {\em complexity} of each model class, that is, the actual difficulty of the estimation problem within each class. The estimated complexities are in turn used to define an adaptive model selection procedure, which is based on complexity penalized empirical risk.The available data are divided into two parts. The first is used to form an empirical cover of each model class, and the second is used to select a candidate rule from each cover based on empirical risk. The covering radii are determined empirically to optimize a tight upper bound on the estimation error. An estimate is chosen from the list of candidates in order to minimize the sum of class complexity and empirical risk. A distinguishing feature of the approach is that the complexity of each model class is assessed empirically, based on the size of its empirical cover.Finite sample performance bounds are established for the estimates, and these bounds are applied to several non-parametric estimation problems. The estimates are shown to achieve a favorable tradeoff between approximation and estimation error, and to perform as well as if the distribution-dependent complexities of the model classes were known beforehand. In addition, it is shown that the estimate can be consistent,and even possess near optimal rates of convergence, when each model class has an infinite VC or pseudo dimension.For regression estimation with squared loss we modify our estimate to achieve a faster rate of convergence.
Resumo:
A method of making a multiple matched filter which allows the recognition of different characters in successive planes in simple conditions is proposed. The generation of the filter is based on recording on the same plate the Fourier transforms of the different patterns to be recognized, each of which is affected by different spherical phase factors because the patterns have been placed at different distances from the lens. This is proved by means of experiments with a triple filter which allows satisfactory recognition of three characters.
Resumo:
We propose a method to obtain a single centered correlation with use of a joint transform correlator. We analyze the required setup to carry out the whole process optically, and we also present experimental results.
Resumo:
We show that Burckhardt's method is available to codify phase-only filters with amplitude-only variations. Correlation experimental results are given.
Resumo:
It is possible to improve the fringe binarization method of joint transform correlation by choosing a suitable threshold level.
Resumo:
In multiobject pattern recognition the height of the correlation peaks should be controlled when the power spectrum of ajoint transform correlator is binarized. In this paper a method to predetermine the value of detection peaks is demonstrated. The technique is based on a frequency-variant threshold in order to remove the intraclass terms and on a suitable factor to normalize the binary joint power spectrum. Digital simulations and experimental hybrid implementation of this method were carried out.
Resumo:
A mathematical model describing the behavior of low-resolution Fresnel encoded lenses (LRFEL's) encoded in any low-resolution device (e.g., a spatial light modulator) has recently been developed. From this model, an LRFEL with a short focal length was optimized by our imposing the maximum intensity of light onto the optical axis. With this model, analytical expressions for the light-amplitude distribution, the diffraction efficiency, and the frequency response of the optimized LRFEL's are derived.
Resumo:
A method of making a multiple matched filter which allows the recognition of different characters in successive planes in simple conditions is proposed. The generation of the filter is based on recording on the same plate the Fourier transforms of the different patterns to be recognized, each of which is affected by different spherical phase factors because the patterns have been placed at different distances from the lens. This is proved by means of experiments with a triple filter which allows satisfactory recognition of three characters.
Resumo:
The use of different kinds of nonlinear filtering in a joint transform correlator are studied and compared. The study is divided into two parts, one corresponding to object space and the second to the Fourier domain of the joint power spectrum. In the first part, phase and inverse filters are computed; their inverse Fourier transforms are also computed, thereby becoming the reference in the object space. In the Fourier space, the binarization of the power spectrum is realized and compared with a new procedure for removing the spatial envelope. All cases are simulated and experimentally implemented by a compact joint transform correlator.
Resumo:
An algorithm for computing correlation filters based on synthetic discriminant functions that can be displayed on current spatial light modulators is presented. The procedure is nondivergent, computationally feasible, and capable of producing multiple solutions, thus overcoming some of the pitfalls of previous methods.
Resumo:
We present a method to detect patterns in defocused scenes by means of a joint transform correlator. We describe analytically the correlation plane, and we also introduce an original procedure to recognize the target by postprocessing the correlation plane. The performance of the methodology when the defocused images are corrupted by additive noise is also considered.
Resumo:
We report the study of the influence of optical aberrations in a joint-transform correlator: The wave aberration of the optical system is computed from data obtained by ray tracing. Three situations are explored: We consider the aberration only in the first diffraction stage (generation of power spectrum), then only in the second (transformation of the power spectrum into correlation), and finally in both stages simultaneously. The results show that the quality of the correlation is determined mostly by the aberrations of the first diffraction stage and that we can optimize the setup by moving the cameras along the optical axis to a suitable position. The good agreement between the predicted data and the experimental results shows that the method explains well the behavior of optical diffraction systems when aberrations are taken into account.
Resumo:
En este artículo se presenta un estudio cuya finalidad es analizar diferentes aspectos de la utilización de pantallas de cristal líquido, extraídas de un videoproyector, en montajes de reconocimiento de formas por correlación. Se analizan las condiciones de funcionamiento de las pantallas y sus posibles modos de configuración. Se estudian dos tipos de filtros de correlación, el filtro adaptado clásico y el de sólo fase, así como la manera de codificarlos en las pantallas. Finalmente, se presentan los resultados de una serie de realizaciones experimentales utilizando un correlador de VanderLugt y diferentes configuraciones de las pantallas. De todo ello se deducen las condiciones óptimas de funcionamiento del sistema.