24 resultados para Nonperturbative QCD
Resumo:
A common belief is that further quantum corrections near the singularity of a large black hole should not substantially modify the semiclassical picture of black hole evaporation; in particular, the outgoing spectrum of radiation should be very close to the thermal spectrum predicted by Hawking. In this paper we explore a possible counterexample: in the context of dilaton gravity, we find that nonperturbative quantum corrections which are important in strong-coupling regions may completely alter the semiclassical picture, to the extent that the presumptive spacelike boundary becomes timelike, changing in this way the causal structure of the semiclassical geometry. As a result, only a small fraction of the total energy is radiated outside the fake event horizon; most of the energy comes in fact at later retarded times and there is no problem of information loss. This may constitute a general characteristic of quantum black holes, that is, quantum gravity might be such as to prevent the formation of global event horizons.
Resumo:
The exchange of gluons between heavy quarks produced in e+e- interactions results in an enhancement of their production near threshold. We study QCD threshold effects in collisions. The results are relevant to heavy quark production by beamstrahlung and laser backscattering in future linear collider experiments. Detailed predictions for top-, bottom-, and charm-quark production are presented.
Resumo:
To cosmic rays incident near the horizon the Earth's atmosphere represents a beam dump with a slant depth reaching 36 000 g cm-2 at 90. The prompt decay of a heavy quark produced by very high energy cosmic ray showers will leave an unmistakable signature in this dump. We translate the failure of experiments to detect such a signal into an upper limit on the heavy quark hadroproduction cross section in the energy region beyond existing accelerators. Our results disfavor any rapid growth of the cross section or the gluon structure function beyond conservative estimates based on perturbative QCD.
Resumo:
We calculate the production of two b-quark pairs in hadron collisions. Sources of multiple pairs are multiple interactions and higher order perturbative QCD mechanisms. We subsequently investigate the competing effects of multiple b-pair production on measurements of CP violation: (i) the increase in event rate with multiple b-pair cross sections which may reach values of the order of 1 b in the presence of multiple interactions and (ii) the dilution of b versus b tagging efficiency because of the presence of events with four B mesons. The impact of multiple B-meson production is small unless the cross section for producing a single pair exceeds 1 mb. We show that even for larger values of the cross section the competing effects (i) and (ii) roughly compensate so that there is no loss in the precision with which CP-violating CKM angles can be determined.
Resumo:
We show that some nonrelativistic quantum chromodynamics color-octet matrix elements can be written in terms of (derivatives of) wave functions at the origin and of nonperturbative universal constants once the factorization between the soft and ultrasoft scales is achieved by using an effective field theory where only ultrasoft degrees of freedom are kept as dynamical entities. This allows us to derive a new set of relations between inclusive heavy-quarkonium P-wave decays into light hadrons with different principal quantum numbers and with different heavy flavors. In particular, we can estimate the ratios of the decay widths of bottomonium P-wave states from charmonium data.
Resumo:
We show that some nonrelativistic quantum chromodynamics color-octet matrix elements can be written in terms of (derivatives of) wave functions at the origin and of nonperturbative universal constants once the factorization between the soft and ultrasoft scales is achieved by using an effective field theory where only ultrasoft degrees of freedom are kept as dynamical entities. This allows us to derive a new set of relations between inclusive heavy-quarkonium P-wave decays into light hadrons with different principal quantum numbers and with different heavy flavors. In particular, we can estimate the ratios of the decay widths of bottomonium P-wave states from charmonium data.
Resumo:
This article reviews recent theoretical developments in heavy-quarkonium physics from the point of view of effective-field theories of QCD. We discuss nonrelativistic QCD and concentrate on potential nonrelativistic QCD. The main goal will be to derive Schrödinger equations based on QCD that govern heavy-quarkonium physics in the weak- and strong-coupling regimes. Finally, the review discusses a selected set of applications, which include spectroscopy, inclusive decays, and electromagnetic threshold production.
Resumo:
We study the eta'N interaction within a chiral unitary approach which includes piN , etaN and related pseudoscalar meson-baryon coupled channels. Since the SU(3) singlet does not contribute to the standard interaction and the eta' is mostly a singlet, the resulting scattering amplitude is very small and inconsistent with experimental estimations of the eta' N scattering length. The additional consideration of vector meson-baryon states into the coupled channel scheme, via normal and anomalous couplings of pseudoscalar to vector mesons, enhances substantially the eta' N amplitude. We also exploit the freedom of adding to the Lagrangian a new term, allowed by the symmetries of QCD, which couples baryons to the singlet meson of SU(3). Adjusting the unknown strength to the eta' N scattering length, we obtain predictions for the elastic eta'N -> etaN and inelastic eta' N -> etaN , piN , KLambda, KEpsilon cross sections at low eta' energies, and discuss their significance.
Resumo:
We present an update of neutral Higgs boson decays into bottom quark pairs in the minimal supersymmetric extension of the standard model. In particular the resummation of potentially large higher-order corrections due to the soft supersymmetry (SUSY) breaking parameters Ab and is extended. The remaining theoretical uncertainties due to unknown higher-order SUSY-QCD corrections are analyzed quantitatively.