23 resultados para Nanofiber structured cathode


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an analytic and numerical study of the effects of external fluctuations in active media. Our analytical methodology transforms the initial stochastic partial differential equations into an effective set of deterministic reaction-diffusion equations. As a result we are able to explain and make quantitative predictions on the systematic and constructive effects of the noise, for example, target patterns created out of noise and traveling or spiral waves sustained by noise. Our study includes the case of realistic noises with temporal and spatial structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Front dynamics modeled by a reaction-diffusion equation are studied under the influence of spatiotemporal structured noises. An effective deterministic model is analytical derived where the noise parameters, intensity, correlation time, and correlation length appear explicitly. The different effects of these parameters are discussed for the Ginzburg-Landau and Schlögl models. We obtain an analytical expression for the front velocity as a function of the noise parameters. Numerical simulation results are in a good agreement with the theoretical predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an analytic and numerical study of the effects of external fluctuations in active media. Our analytical methodology transforms the initial stochastic partial differential equations into an effective set of deterministic reaction-diffusion equations. As a result we are able to explain and make quantitative predictions on the systematic and constructive effects of the noise, for example, target patterns created out of noise and traveling or spiral waves sustained by noise. Our study includes the case of realistic noises with temporal and spatial structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When certain control parameters of nervous cell models are varied, complex bifurcation structures develop in which the dynamical behaviors available appear classified in blocks, according to criteria of dynamical likelihood. This block structured dynamics may be a clue to understand how activated neurons encode information by firing spike trains of their action potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Random problem distributions have played a key role in the study and design of algorithms for constraint satisfaction and Boolean satisfiability, as well as in ourunderstanding of problem hardness, beyond standard worst-case complexity. We consider random problem distributions from a highly structured problem domain that generalizes the Quasigroup Completion problem (QCP) and Quasigroup with Holes (QWH), a widely used domain that captures the structure underlying a range of real-world applications. Our problem domain is also a generalization of the well-known Sudoku puz- zle: we consider Sudoku instances of arbitrary order, with the additional generalization that the block regions can have rectangular shape, in addition to the standard square shape. We evaluate the computational hardness of Generalized Sudoku instances, for different parameter settings. Our experimental hardness results show that we can generate instances that are considerably harder than QCP/QWH instances of the same size. More interestingly, we show the impact of different balancing strategies on problem hardness. We also provide insights into backbone variables in Generalized Sudoku instances and how they correlate to problem hardness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present experiments in which the laterally confined flow of a surfactant film driven by controlled surface tension gradients causes the subtended liquid layer to self-organize into an inner upstream microduct surrounded by the downstream flow. The anomalous interfacial flow profiles and the concomitant backflow are a result of the feedback between two-dimensional and three-dimensional microfluidics realized during flow in open microchannels. Bulk and surface particle image velocimetry data combined with an interfacial hydrodynamics model explain the dependence of the observed phenomena on channel geometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GdBaCo2O5+x (GBCO) was evaluated as a cathode for intermediate-temperature solid oxide fuel cells. A porous layer of GBCO was deposited on an anode-supported fuel cell consisting of a 15m thick electrolyte of yttria-stabilized zirconia (YSZ) prepared by dense screen-printing anda Ni–YSZ cermet as an anode (Ni–YSZ/YSZ/GBCO). Values of power density of 150 mW cm−2 at 700◦C and ca. 250 mW cm−2 at 800◦C are reported for this standard configuration using 5% of H2 in nitrogen as fuel. An intermediate porous layer of YSZ was introduced between the electrolyte and the cathode improving the performance of the cell. Values for power density of 300 mW cm−2 at 700◦C and ca. 500 mW cm−2 at 800◦C in this configuration were achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the lysis timing of a bacteriophage population by means of a continuously infection-age-structured population dynamics model. The features of the model are the infection process of bacteria, the death process, and the lysis process which means the replication of bacteriophage viruses inside bacteria and the destruction of them. The time till lysis (or latent period) is assumed to have an arbitrary distribution. We have carried out an optimization procedure, and we have found that the latent period corresponding to maximal fitness (i.e. maximal growth rate of the bacteriophage population) is of fixed length. We also study the dependence of the optimal latent period on the amount of susceptible bacteria and the number of virions released by a single infection. Finally, the evolutionarily stable strategy of the latent period is also determined as a fixed period taking into account that super-infections are not considered