58 resultados para Multiple classification
Resumo:
Aquest treball de recerca tracta de la relació existent entre pedagogia, traducció, llengües estrangeres i intel•ligències múltiples. El debat sobre si la traducció és una eina útil a la classe de llengües estrangeres és un tema actual sobre el qual molts investigadors encara indaguen. Estudis recents, però, han demostrat que qualsevol tasca de traducció -en la qual s’hi poden incloure treballs amb les diferents habilitats- és profitosa si la considerem un mitjà, no una finalitat en ella mateixa. Evidentment, l’ús de la traducció dins l’aula és avantatjosa, però també hem de tenir presents certs desavantatges d’aquesta aplicació. Un possible desavantatge podria ser la creença que, al principi, molta gent té referent a l’equivalència, paraula per paraula, d’una llengua vers una altra. Però després de presentar vàries tasques de traducció als estudiants, aquests poden arribar a controlar, fins i tot, les traduccions inconscients i poden assolir un cert nivell de precisió i flexibilitat que val la pena mencionar. Però l’avantatge principal és que s’enfronten a una activitat molt estesa dins la societat actual que combina dues llengües, la llengua materna i la llengua objecte d’estudi, per exemple. De tot això en podem deduir que utilitzar la llengua materna a la classe no s’ha de considerar un crim, com fins ara, sinó una virtut, evidentment si és emprada correctament. En aquest treball de recerca s’hi pot trobar una síntesi tant de les principals teories d’adquisició i aprenentatge de llengües com de les teories de traducció. A la pregunta de si les teories, tant de traducció com de llengües estrangeres, s’haurien d’ensenyar implícita o explícitament, es pot inferir que segons el nivell d’estudis on estiguin els aprenents els convindrà aprendre les teories explícitament o les aprendran, de totes maneres, implícitament. Com que qualsevol grup d’estudiants és heterogeni -és a dir que cada individu té un ritme i un nivell d’aprenentatge concret i sobretot cadascú té diferents estils de percepció (visual, auditiu, gustatiu, olfactiu, de moviment) i per tant diferents intel•ligències-, els professors ho han de tenir en compte a l’hora de planificar qualsevol programa d’actuació vers els alumnes. Per tant, podem concloure que les tasques o projectes de traducció poden ajudar als alumnes a aprendre millor, més eficaçment i a aconseguir un aprenentatge més significatiu.
Resumo:
Land cover classification is a key research field in remote sensing and land change science as thematic maps derived from remotely sensed data have become the basis for analyzing many socio-ecological issues. However, land cover classification remains a difficult task and it is especially challenging in heterogeneous tropical landscapes where nonetheless such maps are of great importance. The present study aims to establish an efficient classification approach to accurately map all broad land cover classes in a large, heterogeneous tropical area of Bolivia, as a basis for further studies (e.g., land cover-land use change). Specifically, we compare the performance of parametric (maximum likelihood), non-parametric (k-nearest neighbour and four different support vector machines - SVM), and hybrid classifiers, using both hard and soft (fuzzy) accuracy assessments. In addition, we test whether the inclusion of a textural index (homogeneity) in the classifications improves their performance. We classified Landsat imagery for two dates corresponding to dry and wet seasons and found that non-parametric, and particularly SVM classifiers, outperformed both parametric and hybrid classifiers. We also found that the use of the homogeneity index along with reflectance bands significantly increased the overall accuracy of all the classifications, but particularly of SVM algorithms. We observed that improvements in producer’s and user’s accuracies through the inclusion of the homogeneity index were different depending on land cover classes. Earlygrowth/degraded forests, pastures, grasslands and savanna were the classes most improved, especially with the SVM radial basis function and SVM sigmoid classifiers, though with both classifiers all land cover classes were mapped with producer’s and user’s accuracies of around 90%. Our approach seems very well suited to accurately map land cover in tropical regions, thus having the potential to contribute to conservation initiatives, climate change mitigation schemes such as REDD+, and rural development policies.
Resumo:
Els catéters venosos centrals són necessaris per al maneig del pacient crític però poden ser l´origen d´una bacteriemia. Aquest estudi prospectiu de cohort té com a objectiu determinar la utilitat de l´aplicació d´unes mesures bàsiques de prevenció per disminuir la incidència de bacteriemia associada a catéter. Els resultats de l´estudi confirmen que l´aplicació d´aquest sistema d´intervenció múltiple basat en l´evidencia redueix de forma significativa les bacteriemies associades a catéter a la nostra UCI.
Resumo:
A parts based model is a parametrization of an object class using a collection of landmarks following the object structure. The matching of parts based models is one of the problems where pairwise Conditional Random Fields have been successfully applied. The main reason of their effectiveness is tractable inference and learning due to the simplicity of involved graphs, usually trees. However, these models do not consider possible patterns of statistics among sets of landmarks, and thus they sufffer from using too myopic information. To overcome this limitation, we propoese a novel structure based on a hierarchical Conditional Random Fields, which we explain in the first part of this memory. We build a hierarchy of combinations of landmarks, where matching is performed taking into account the whole hierarchy. To preserve tractable inference we effectively sample the label set. We test our method on facial feature selection and human pose estimation on two challenging datasets: Buffy and MultiPIE. In the second part of this memory, we present a novel approach to multiple kernel combination that relies on stacked classification. This method can be used to evaluate the landmarks of the parts-based model approach. Our method is based on combining responses of a set of independent classifiers for each individual kernel. Unlike earlier approaches that linearly combine kernel responses, our approach uses them as inputs to another set of classifiers. We will show that we outperform state-of-the-art methods on most of the standard benchmark datasets.
Resumo:
Michigan State University and OER Africa are creating a win-win collaboration of existing organizations for African publishing, localizing, and sharing of teaching and learning materials that fill critical resource gaps in African MSc agriculture curriculum. By the end of the 18-month planning and pilot initiative, African agriculture universities, faculty, students, researchers, NGO leaders, extension staff, and farmers will participate in building AgShare by demonstrating its benefits and outcomes and by building momentum and support for growth.
Resumo:
A table showing a comparison and classification of tools (intelligent tutoring systems) for e-learning of Logic at a college level.
Resumo:
Planners in public and private institutions would like coherent forecasts of the components of age-specic mortality, such as causes of death. This has been di cult toachieve because the relative values of the forecast components often fail to behave ina way that is coherent with historical experience. In addition, when the group forecasts are combined the result is often incompatible with an all-groups forecast. It hasbeen shown that cause-specic mortality forecasts are pessimistic when compared withall-cause forecasts (Wilmoth, 1995). This paper abandons the conventional approachof using log mortality rates and forecasts the density of deaths in the life table. Sincethese values obey a unit sum constraint for both conventional single-decrement life tables (only one absorbing state) and multiple-decrement tables (more than one absorbingstate), they are intrinsically relative rather than absolute values across decrements aswell as ages. Using the methods of Compositional Data Analysis pioneered by Aitchison(1986), death densities are transformed into the real space so that the full range of multivariate statistics can be applied, then back-transformed to positive values so that theunit sum constraint is honoured. The structure of the best-known, single-decrementmortality-rate forecasting model, devised by Lee and Carter (1992), is expressed incompositional form and the results from the two models are compared. The compositional model is extended to a multiple-decrement form and used to forecast mortalityby cause of death for Japan
Resumo:
”compositions” is a new R-package for the analysis of compositional and positive data.It contains four classes corresponding to the four different types of compositional andpositive geometry (including the Aitchison geometry). It provides means for computation,plotting and high-level multivariate statistical analysis in all four geometries.These geometries are treated in an fully analogous way, based on the principle of workingin coordinates, and the object-oriented programming paradigm of R. In this way,called functions automatically select the most appropriate type of analysis as a functionof the geometry. The graphical capabilities include ternary diagrams and tetrahedrons,various compositional plots (boxplots, barplots, piecharts) and extensive graphical toolsfor principal components. Afterwards, ortion and proportion lines, straight lines andellipses in all geometries can be added to plots. The package is accompanied by ahands-on-introduction, documentation for every function, demos of the graphical capabilitiesand plenty of usage examples. It allows direct and parallel computation inall four vector spaces and provides the beginner with a copy-and-paste style of dataanalysis, while letting advanced users keep the functionality and customizability theydemand of R, as well as all necessary tools to add own analysis routines. A completeexample is included in the appendix
Resumo:
We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos
Resumo:
A recent trend in digital mammography is computer-aided diagnosis systems, which are computerised tools designed to assist radiologists. Most of these systems are used for the automatic detection of abnormalities. However, recent studies have shown that their sensitivity is significantly decreased as the density of the breast increases. This dependence is method specific. In this paper we propose a new approach to the classification of mammographic images according to their breast parenchymal density. Our classification uses information extracted from segmentation results and is based on the underlying breast tissue texture. Classification performance was based on a large set of digitised mammograms. Evaluation involves different classifiers and uses a leave-one-out methodology. Results demonstrate the feasibility of estimating breast density using image processing and analysis techniques
Resumo:
This paper presents an application of the Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) approach to the estimation of quantities of Gross Value Added (GVA) referring to economic entities defined at different scales of study. The method first estimates benchmark values of the pace of GVA generation per hour of labour across economic sectors. These values are estimated as intensive variables –e.g. €/hour– by dividing the various sectorial GVA of the country (expressed in € per year) by the hours of paid work in that same sector per year. This assessment is obtained using data referring to national statistics (top down information referring to the national level). Then, the approach uses bottom-up information (the number of hours of paid work in the various economic sectors of an economic entity –e.g. a city or a province– operating within the country) to estimate the amount of GVA produced by that entity. This estimate is obtained by multiplying the number of hours of work in each sector in the economic entity by the benchmark value of GVA generation per hour of work of that particular sector (national average). This method is applied and tested on two different socio-economic systems: (i) Catalonia (considered level n) and Barcelona (considered level n-1); and (ii) the region of Lima (considered level n) and Lima Metropolitan Area (considered level n-1). In both cases, the GVA per year of the local economic entity –Barcelona and Lima Metropolitan Area – is estimated and the resulting value is compared with GVA data provided by statistical offices. The empirical analysis seems to validate the approach, even though the case of Lima Metropolitan Area indicates a need for additional care when dealing with the estimate of GVA in primary sectors (agriculture and mining).
Resumo:
A statistical method for classification of sags their origin downstream or upstream from the recording point is proposed in this work. The goal is to obtain a statistical model using the sag waveforms useful to characterise one type of sags and to discriminate them from the other type. This model is built on the basis of multi-way principal component analysis an later used to project the available registers in a new space with lower dimension. Thus, a case base of diagnosed sags is built in the projection space. Finally classification is done by comparing new sags against the existing in the case base. Similarity is defined in the projection space using a combination of distances to recover the nearest neighbours to the new sag. Finally the method assigns the origin of the new sag according to the origin of their neighbours
Resumo:
The paper discusses maintenance challenges of organisations with a huge number of devices and proposes the use of probabilistic models to assist monitoring and maintenance planning. The proposal assumes connectivity of instruments to report relevant features for monitoring. Also, the existence of enough historical registers with diagnosed breakdowns is required to make probabilistic models reliable and useful for predictive maintenance strategies based on them. Regular Markov models based on estimated failure and repair rates are proposed to calculate the availability of the instruments and Dynamic Bayesian Networks are proposed to model cause-effect relationships to trigger predictive maintenance services based on the influence between observed features and previously documented diagnostics
Resumo:
It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. Here, we describe the development of an automatic breast tissue classification methodology, which can be summarized in a number of distinct steps: 1) the segmentation of the breast area into fatty versus dense mammographic tissue; 2) the extraction of morphological and texture features from the segmented breast areas; and 3) the use of a Bayesian combination of a number of classifiers. The evaluation, based on a large number of cases from two different mammographic data sets, shows a strong correlation ( and 0.67 for the two data sets) between automatic and expert-based Breast Imaging Reporting and Data System mammographic density assessment
Resumo:
Given a set of images of scenes containing different object categories (e.g. grass, roads) our objective is to discover these objects in each image, and to use this object occurrences to perform a scene classification (e.g. beach scene, mountain scene). We achieve this by using a supervised learning algorithm able to learn with few images to facilitate the user task. We use a probabilistic model to recognise the objects and further we classify the scene based on their object occurrences. Experimental results are shown and evaluated to prove the validity of our proposal. Object recognition performance is compared to the approaches of He et al. (2004) and Marti et al. (2001) using their own datasets. Furthermore an unsupervised method is implemented in order to evaluate the advantages and disadvantages of our supervised classification approach versus an unsupervised one