17 resultados para Multi-objective genetic algorithm
Resumo:
tThis paper deals with the potential and limitations of using voice and speech processing to detect Obstruc-tive Sleep Apnea (OSA). An extensive body of voice features has been extracted from patients whopresent various degrees of OSA as well as healthy controls. We analyse the utility of a reduced set offeatures for detecting OSA. We apply various feature selection and reduction schemes (statistical rank-ing, Genetic Algorithms, PCA, LDA) and compare various classifiers (Bayesian Classifiers, kNN, SupportVector Machines, neural networks, Adaboost). S-fold crossvalidation performed on 248 subjects showsthat in the extreme cases (that is, 127 controls and 121 patients with severe OSA) voice alone is able todiscriminate quite well between the presence and absence of OSA. However, this is not the case withmild OSA and healthy snoring patients where voice seems to play a secondary role. We found that thebest classification schemes are achieved using a Genetic Algorithm for feature selection/reduction.
Resumo:
Modeling ecological niches of species is a promising approach for predicting the geographic potential of invasive species in new environments. Argentine ants (Linepithema humile) rank among the most successful invasive species: native to South America, they have invaded broad areas worldwide. Despite their widespread success, little is known about what makes an area susceptible - or not - to invasion. Here, we use a genetic algorithm approach to ecological niche modeling based on high-resolution remote-sensing data to examine the roles of niche similarity and difference in predicting invasions by this species. Our comparisons support a picture of general conservatism of the species' ecological characteristics, in spite of distinct geographic and community contexts