19 resultados para MAP GERMS
Resumo:
From the point of view of uniform bounds for the birationality of pluricanonical maps, irregular varieties of general type and maximal Albanese dimension behave similarly to curves. In fact Chen-Hacon showed that, at least when their holomorphic Euler characteristic is positive, the tricanonical map of such varieties is always birational. In this paper we study the bicanonical map. We consider the natural subclass of varieties of maximal Albanese dimension formed by primitive varieties of Albanese general type. We prove that the only such varieties with non-birational bicanonical map are the natural higher-dimensional generalization to this context of curves of genus $2$: varieties birationally equivalent to the theta-divisor of an indecomposable principally polarized abelian variety. The proof is based on the (generalized) Fourier-Mukai transform.
Resumo:
En este informe se describe el trabajo de fin de máster, centrado en el estudio de la gamificación como herramienta de aprendizaje aplicada a dispositivos móviles. Se ha realizado una revisión de los artículos científicos que tratan sobre el tema de la gamificación como herramienta educativa, para terminar el trabajo desarrollando un prototipo de juego para el aprendizaje de mapas de Karnaugh. Se ha optado por un desarrollo multiplataforma y se han revisado los frameworks de desarrollo más populares para desarrollo móvil multiplataforma, así como los motores de juegos aplicables a este caso. Tras la implementación, se ha probado el prototipo en dos sistemas operativos móviles libres: Android y Firefox OS.
Resumo:
From the point of view of uniform bounds for the birationality of pluricanonical maps, irregular varieties of general type and maximal Albanese dimension behave similarly to curves. In fact Chen-Hacon showed that, at least when their holomorphic Euler characteristic is positive, the tricanonical map of such varieties is always birational. In this paper we study the bicanonical map. We consider the natural subclass of varieties of maximal Albanese dimension formed by primitive varieties of Albanese general type. We prove that the only such varieties with non-birational bicanonical map are the natural higher-dimensional generalization to this context of curves of genus $2$: varieties birationally equivalent to the theta-divisor of an indecomposable principally polarized abelian variety. The proof is based on the (generalized) Fourier-Mukai transform.
Resumo:
A technique for simultaneous localisation and mapping (SLAM) for large scale scenarios is presented. This solution is based on the use of independent submaps of a limited size to map large areas. In addition, a global stochastic map, containing the links between adjacent submaps, is built. The information in both levels is corrected every time a loop is closed: local maps are updated with the information from overlapping maps, and the global stochastic map is optimised by means of constrained minimisation