22 resultados para MAMMOGRAPHIC X-RAY SPECTRA
Resumo:
This article summarizes the basic principles of photoelectron spectroscopy for surface analysis, with examples of applications in material science that illustrate the capabilities of the related techniques.
Resumo:
In this article the main possibilities of single crystal and powder diffraction analysis using conventional laboratory x-ray sources are introduced. Several examples of applications with different solid samples and in different fields of applications are shown illustrating the multidisciplinary capabilities of both techniques.
Resumo:
Purpose: Atheromatic plaque progression is affected, among others phenomena, by biomechanical, biochemical, and physiological factors. In this paper, the authors introduce a novel framework able to provide both morphological (vessel radius, plaque thickness, and type) and biomechanical (wall shear stress and Von Mises stress) indices of coronary arteries. Methods: First, the approach reconstructs the three-dimensional morphology of the vessel from intravascular ultrasound(IVUS) and Angiographic sequences, requiring minimal user interaction. Then, a computational pipeline allows to automatically assess fluid-dynamic and mechanical indices. Ten coronary arteries are analyzed illustrating the capabilities of the tool and confirming previous technical and clinical observations. Results: The relations between the arterial indices obtained by IVUS measurement and simulations have been quantitatively analyzed along the whole surface of the artery, extending the analysis of the coronary arteries shown in previous state of the art studies. Additionally, for the first time in the literature, the framework allows the computation of the membrane stresses using a simplified mechanical model of the arterial wall. Conclusions: Circumferentially (within a given frame), statistical analysis shows an inverse relation between the wall shear stress and the plaque thickness. At the global level (comparing a frame within the entire vessel), it is observed that heavy plaque accumulations are in general calcified and are located in the areas of the vessel having high wall shear stress. Finally, in their experiments the inverse proportionality between fluid and structural stresses is observed.
Resumo:
Purpose: Atheromatic plaque progression is affected, among others phenomena, by biomechanical, biochemical, and physiological factors. In this paper, the authors introduce a novel framework able to provide both morphological (vessel radius, plaque thickness, and type) and biomechanical (wall shear stress and Von Mises stress) indices of coronary arteries. Methods: First, the approach reconstructs the three-dimensional morphology of the vessel from intravascular ultrasound(IVUS) and Angiographic sequences, requiring minimal user interaction. Then, a computational pipeline allows to automatically assess fluid-dynamic and mechanical indices. Ten coronary arteries are analyzed illustrating the capabilities of the tool and confirming previous technical and clinical observations. Results: The relations between the arterial indices obtained by IVUS measurement and simulations have been quantitatively analyzed along the whole surface of the artery, extending the analysis of the coronary arteries shown in previous state of the art studies. Additionally, for the first time in the literature, the framework allows the computation of the membrane stresses using a simplified mechanical model of the arterial wall. Conclusions: Circumferentially (within a given frame), statistical analysis shows an inverse relation between the wall shear stress and the plaque thickness. At the global level (comparing a frame within the entire vessel), it is observed that heavy plaque accumulations are in general calcified and are located in the areas of the vessel having high wall shear stress. Finally, in their experiments the inverse proportionality between fluid and structural stresses is observed.
Resumo:
We report on the results of the spectral and timing analysis of a BeppoSAX observation of the microquasar system LS 5039/RX J1826.2-1450. The source was found in a low-flux state with Fx(1-10 keV)= 4.7 x 10^{-12} erg cm^{-2} s^{-1}, which represents almost one order of magnitude lower than a previous RXTE observation 2.5 years before. The 0.1--10 keV spectrum is described by an absorbed power-law continuum with photon-number spectral index Gamma=1.8+-0.2 and hydrogen column density of NH=1.0^{+0.4}_{-0.3} x 10^{22} cm^{-2}. According to the orbital parameters of the system the BeppoSAX observation covers the time of an X-ray eclipse should one occur. However, the 1.6-10 keV light curve does not show evidence for such an event, which allows us to give an upper limit to the inclination of the system. The low X-ray flux detected during this observation is interpreted as a decrease in the mass accretion rate onto the compact object due to a decrease in the mass-loss rate from the primary.
Resumo:
One of the most important reference groups for Mycenaean pottery is the Mycenae/Berbati (MB). In several studies, a second group has been identified (MBKR). The chemical compositions were similar to MB, but with important differences in the Na, K and Rb contents. The present study suggests that these differences are due to selective alteration and contamination processes that are indirectly determined by the original firing temperature. Therefore, groups MB and MBKR should be considered as a single reference group.
Resumo:
RX J1826.2-1450/LS 5039 has been recently proposed to be a radio emitting high mass X-ray binary. In this paper, we present an analysis of its X-ray timing and spectroscopic properties using different instruments on board the RXTE satellite. The timing analysis indicates the absence of pulsed or periodic emission on time scales of 0.02-2000 s and 2-200 d, respectively. The source spectrum is well represented by a power-law model, plus a Gaussian component describing a strong iron line at 6.6 keV. Significant emission is seen up to 30 keV, and no exponential cut-off at high energy is required. We also study the radio properties of the system according to the GBI-NASA Monitoring Program. RX J1826.2-1450/LS 5039 continues to display moderate radio variability with a clearly non-thermal spectral index. No strong radio outbursts have been detected after several months.