20 resultados para Logistic regression mixture models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background During the 2009 influenza pandemic, a change in the type of patients most often affected by influenza was observed. The objective of this study was to assess the role of individual and social determinants in hospitalizations due to influenza A (H1N1) 2009 infection. Methods We studied hospitalized patients (cases) and outpatients (controls) with confirmed influenza A (H1N1) 2009 infection. A standardized questionnaire was used to collect data. Variables that might be related to the hospitalization of influenza cases were compared by estimation of the odds ratio (OR) and 95% confidence intervals (CI) and the variables entered into binomial logistic regression models. Results Hospitalization due to pandemic A (H1N1) 2009 influenza virus infections was associated with non-Caucasian ethnicity (OR: 2.18, 95% CI 1.17 − 4.08), overcrowding (OR: 2.84, 95% CI 1.20 − 6.72), comorbidity and the lack of previous preventive information (OR: 2.69, 95% CI: 1.50 − 4.83). Secondary or higher education was associated with a lower risk of hospitalization (OR 0.56, 95% CI: 0.36 − 0.87) Conclusions In addition to individual factors such as comorbidity, other factors such as educational level, ethnicity or overcrowding were associated with hospitalization due to A (H1N1) 2009 influenza virus infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Hospitalization is a costly and distressing event associated with relapse during schizophrenia treatment. No information is available on the predictors of psychiatric hospitalization during maintenance treatment with olanzapine long-acting injection (olanzapine-LAI) or how the risk of hospitalization differs between olanzapine-LAI and oral olanzapine. This study aimed to identify the predictors of psychiatric hospitalization during maintenance treatment with olanzapine-LAI and assessed four parameters: hospitalization prevalence, incidence rate, duration, and the time to first hospitalization. Olanzapine-LAI was also compared with a sub-therapeutic dose of olanzapine-LAI and with oral olanzapine. METHODS: This was a post hoc exploratory analysis of data from a randomized, double-blind study comparing the safety and efficacy of olanzapine-LAI (pooled active depot groups: 405 mg/4 weeks, 300 mg/2 weeks, and 150 mg/2 weeks) with oral olanzapine and sub-therapeutic olanzapine-LAI (45 mg/4 weeks) during 6 months' maintenance treatment of clinically stable schizophrenia outpatients (n=1064). The four psychiatric hospitalization parameters were analyzed for each treatment group. Within the olanzapine-LAI group, patients with and without hospitalization were compared on baseline characteristics. Logistic regression and Cox's proportional hazards models were used to identify the best predictors of hospitalization. Comparisons between the treatment groups employed descriptive statistics, the Kaplan-Meier estimator and Cox's proportional hazards models. RESULTS: Psychiatric hospitalization was best predicted by suicide threats in the 12 months before baseline and by prior hospitalization. Compared with sub-therapeutic olanzapine-LAI, olanzapine-LAI was associated with a significantly lower hospitalization rate (5.2% versus 11.1%, p < 0.01), a lower mean number of hospitalizations (0.1 versus 0.2, p = 0.01), a shorter mean duration of hospitalization (1.5 days versus 2.9 days, p < 0.01), and a similar median time to first hospitalization (35 versus 60 days, p = 0.48). Olanzapine-LAI did not differ significantly from oral olanzapine on the studied hospitalization parameters. CONCLUSIONS: In clinically stable schizophrenia outpatients receiving olanzapine-LAI maintenance treatment, psychiatric hospitalization was best predicted by a history of suicide threats and prior psychiatric hospitalization. Olanzapine-LAI was associated with a significantly lower incidence of psychiatric hospitalization and shorter duration of hospitalization compared with sub-therapeutic olanzapine-LAI. Olanzapine-LAI did not differ significantly from oral olanzapine on hospitalization parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: With many atypical antipsychotics now available in the market, it has become a common clinical practice to switch between atypical agents as a means of achieving the best clinical outcomes. This study aimed to examine the impact of switching from olanzapine to risperidone and vice versa on clinical status and tolerability outcomes in outpatients with schizophrenia in a naturalistic setting. METHODS: W-SOHO was a 3-year observational study that involved over 17,000 outpatients with schizophrenia from 37 countries worldwide. The present post hoc study focused on the subgroup of patients who started taking olanzapine at baseline and subsequently made the first switch to risperidone (n=162) and vice versa (n=136). Clinical status was assessed at the visit when the first switch was made (i.e. before switching) and after switching. Logistic regression models examined the impact of medication switch on tolerability outcomes, and linear regression models assessed the association between medication switch and change in the Clinical Global Impression-Schizophrenia (CGI-SCH) overall score or change in weight. In addition, Kaplan-Meier survival curves and Cox-proportional hazards models were used to analyze the time to medication switch as well as time to relapse (symptom worsening as assessed by the CGI-SCH scale or hospitalization). RESULTS: 48% and 39% of patients switching to olanzapine and risperidone, respectively, remained on the medication without further switches (p=0.019). Patients switching to olanzapine were significantly less likely to experience relapse (hazard ratio: 3.43, 95% CI: 1.43, 8.26), extrapyramidal symptoms (odds ratio [OR]: 4.02, 95% CI: 1.49, 10.89) and amenorrhea/galactorrhea (OR: 8.99, 95% CI: 2.30, 35.13). No significant difference in weight change was, however, found between the two groups. While the CGI-SCH overall score improved in both groups after switching, there was a significantly greater change in those who switched to olanzapine (difference of 0.29 points, p=0.013). CONCLUSION: Our study showed that patients who switched from risperidone to olanzapine were likely to experience a more favorable treatment course than those who switched from olanzapine to risperidone. Given the nature of observational study design and small sample size, additional studies are warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bread is one of the most widely consumed foods. Its impact on human health is currently of special interest for researchers. We aimed to identify biomarkers of bread consumption by applying a nutrimetabolomic approach to a free-living population. An untargeted HPLC q-TOF-MS and multivariate analysis was applied to human urine from 155 subjects stratified by habitual bread consumption in three groups: non-consumers of bread (n = 56), white-bread consumers (n = 48) and whole-grain bread consumers (n = 51). The most differential metabolites (variable importance for projection ≥1.5) included compounds originating from cereal plant phytochemicals such as benzoxazinoids and alkylresorcinol metabolites, and compounds produced by gut microbiota (such as enterolactones, hydroxybenzoic and dihydroferulic acid metabolites). Pyrraline, riboflavin, 3-indolecarboxylic acid glucuronide, 2,8-dihydroxyquinoline glucuronide and N-α-acetylcitrulline were also tentatively identified. In order to combine multiple metabolites in a model to predict bread consumption, a stepwise logistic regression analysis was used. Receiver operating curves were constructed to evaluate the global performance of individual metabolites and their combination. The area under the curve values [AUC (95 % CI)] of combined models ranged from 77.8 % (69.1 86.4 %) to 93.7 % (89.4 98.1 %), whereas the AUC for the metabolites included in the models had weak values when they were evaluated individually: from 58.1 % (46.6 69.7 %) to 78.4 % (69.8 87.1 %). Our study showed that a daily bread intake significantly impacted on the urinary metabolome, despite being examined under uncontrolled free-living conditions. We further concluded that a combination of several biomarkers of exposure is better than a single biomarker for the predictive ability of discriminative analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bread is one of the most widely consumed foods. Its impact on human health is currently of special interest for researchers. We aimed to identify biomarkers of bread consumption by applying a nutrimetabolomic approach to a free-living population. An untargeted HPLC q-TOF-MS and multivariate analysis was applied to human urine from 155 subjects stratified by habitual bread consumption in three groups: non-consumers of bread (n = 56), white-bread consumers (n = 48) and whole-grain bread consumers (n = 51). The most differential metabolites (variable importance for projection ≥1.5) included compounds originating from cereal plant phytochemicals such as benzoxazinoids and alkylresorcinol metabolites, and compounds produced by gut microbiota (such as enterolactones, hydroxybenzoic and dihydroferulic acid metabolites). Pyrraline, riboflavin, 3-indolecarboxylic acid glucuronide, 2,8-dihydroxyquinoline glucuronide and N-α-acetylcitrulline were also tentatively identified. In order to combine multiple metabolites in a model to predict bread consumption, a stepwise logistic regression analysis was used. Receiver operating curves were constructed to evaluate the global performance of individual metabolites and their combination. The area under the curve values [AUC (95 % CI)] of combined models ranged from 77.8 % (69.1 86.4 %) to 93.7 % (89.4 98.1 %), whereas the AUC for the metabolites included in the models had weak values when they were evaluated individually: from 58.1 % (46.6 69.7 %) to 78.4 % (69.8 87.1 %). Our study showed that a daily bread intake significantly impacted on the urinary metabolome, despite being examined under uncontrolled free-living conditions. We further concluded that a combination of several biomarkers of exposure is better than a single biomarker for the predictive ability of discriminative analysis.