25 resultados para Local Variation Method
Resumo:
Gene flow (defined as allele exchange between populations) and gene flux (defined as allele exchange during meiosis in heterokaryotypic females) are important factors decreasing genetic differentiation between populations and inversions. Many chromosomal inversions are under strong selection and their role in recombination reduction enhances the maintenance of their genetic distinctness. Here we analyze levels and patterns of nucleotide diversity, selection and demographic history, using 37 individuals of Drosophila subobscura from Mount Parnes (Greece) and Barcelona (Spain). Our sampling focused on two frequent O-chromosome arrangements that differ by two overlapping inversions (OST and O3+4), which are differentially adapted to the environment as observed by their opposing latitudinal clines in inversion frequencies. The six analyzed genes (Pif1A, Abi, Sqd, Yrt, Atpa and Fmr1) were selected for their location across the O-chromosome and their implication in thermal adaptation. Despite the extensive gene flux detected outside the inverted region, significant genetic differentiation between both arrangements was found inside it. However, high levels of gene flow were detected for all six genes when comparing the same arrangement among populations. These results suggest that the adaptive value of inversions is maintained, regardless of the lack of genetic differentiation within arrangements from different populations, and thus favors the Local Adaptation hypothesis over the Coadapted Genome hypothesis as the basis of the selection acting on inversions in these populations.
Resumo:
Background: TILLING (Targeting Induced Local Lesions IN Genomes) is a reverse genetic method that combines chemical mutagenesis with high-throughput genome-wide screening for point mutation detection in genes of interest. However, this mutation discovery approach faces a particular problem which is how to obtain a mutant population with a sufficiently high mutation density. Furthermore, plant mutagenesis protocols require two successive generations (M1, M2) for mutation fixation to occur before the analysis of the genotype can begin. Results: Here, we describe a new TILLING approach for rice based on ethyl methanesulfonate (EMS) mutagenesis of mature seed-derived calli and direct screening of in vitro regenerated plants. A high mutagenesis rate was obtained (i.e. one mutation in every 451 Kb) when plants were screened for two senescence-related genes. Screening was carried out in 2400 individuals from a mutant population of 6912. Seven sense change mutations out of 15 point mutations were identified. Conclusions: This new strategy represents a significant advantage in terms of time-savings (i.e. more than eight months), greenhouse space and work during the generation of mutant plant populations. Furthermore, this effective chemical mutagenesis protocol ensures high mutagenesis rates thereby saving in waste removal costs and the total amount of mutagen needed thanks to the mutagenesis volume reduction.
Resumo:
The most suitable method for estimation of size diversity is investigated. Size diversity is computed on the basis of the Shannon diversity expression adapted for continuous variables, such as size. It takes the form of an integral involving the probability density function (pdf) of the size of the individuals. Different approaches for the estimation of pdf are compared: parametric methods, assuming that data come from a determinate family of pdfs, and nonparametric methods, where pdf is estimated using some kind of local evaluation. Exponential, generalized Pareto, normal, and log-normal distributions have been used to generate simulated samples using estimated parameters from real samples. Nonparametric methods include discrete computation of data histograms based on size intervals and continuous kernel estimation of pdf. Kernel approach gives accurate estimation of size diversity, whilst parametric methods are only useful when the reference distribution have similar shape to the real one. Special attention is given for data standardization. The division of data by the sample geometric mean is proposedas the most suitable standardization method, which shows additional advantages: the same size diversity value is obtained when using original size or log-transformed data, and size measurements with different dimensionality (longitudes, areas, volumes or biomasses) may be immediately compared with the simple addition of ln k where kis the dimensionality (1, 2, or 3, respectively). Thus, the kernel estimation, after data standardization by division of sample geometric mean, arises as the most reliable and generalizable method of size diversity evaluation
Resumo:
A BASIC computer program (REMOVAL) was developed to compute in a VAXNMS environment all the calculations of the removal method for population size estimation (catch-effort method for closed populations with constant sampling effort). The program follows the maximum likelihood methodology,checks the failure conditions, applies the appropriate formula, and displays the estimates of population size and catchability, with their standard deviations and coefficients of variation, and two goodness-of-fit statistics with their significance levels. Data of removal experiments for the cyprinodontid fish Aphanius iberus in the Alt Emporda wetlands are used to exemplify the use of the program
Resumo:
We present an analytical procedure to perform the local noise analysis of a semiconductor junction when both the drift and diffusive parts of the current are important. The method takes into account space-inhomogeneous and hot-carriers conditions in the framework of the drift-diffusion model, and it can be effectively applied to the local noise analysis of different devices: n+nn+ diodes, Schottky barrier diodes, field-effect transistors, etc., operating under strongly inhomogeneous distributions of the electric field and charge concentration
Resumo:
A theoretical model for the noise properties of Schottky barrier diodes in the framework of the thermionic-emission¿diffusion theory is presented. The theory incorporates both the noise inducedby the diffusion of carriers through the semiconductor and the noise induced by the thermionicemission of carriers across the metal¿semiconductor interface. Closed analytical formulas arederived for the junction resistance, series resistance, and contributions to the net noise localized indifferent space regions of the diode, all valid in the whole range of applied biases. An additionalcontribution to the voltage-noise spectral density is identified, whose origin may be traced back tothe cross correlation between the voltage-noise sources associated with the junction resistance andthose for the series resistance. It is argued that an inclusion of the cross-correlation term as a newelement in the existing equivalent circuit models of Schottky diodes could explain the discrepanciesbetween these models and experimental measurements or Monte Carlo simulations.
Resumo:
We present an analytical procedure to perform the local noise analysis of a semiconductor junction when both the drift and diffusive parts of the current are important. The method takes into account space-inhomogeneous and hot-carriers conditions in the framework of the drift-diffusion model, and it can be effectively applied to the local noise analysis of different devices: n+nn+ diodes, Schottky barrier diodes, field-effect transistors, etc., operating under strongly inhomogeneous distributions of the electric field and charge concentration
Resumo:
A theoretical model for the noise properties of Schottky barrier diodes in the framework of the thermionic-emission¿diffusion theory is presented. The theory incorporates both the noise inducedby the diffusion of carriers through the semiconductor and the noise induced by the thermionicemission of carriers across the metal¿semiconductor interface. Closed analytical formulas arederived for the junction resistance, series resistance, and contributions to the net noise localized indifferent space regions of the diode, all valid in the whole range of applied biases. An additionalcontribution to the voltage-noise spectral density is identified, whose origin may be traced back tothe cross correlation between the voltage-noise sources associated with the junction resistance andthose for the series resistance. It is argued that an inclusion of the cross-correlation term as a newelement in the existing equivalent circuit models of Schottky diodes could explain the discrepanciesbetween these models and experimental measurements or Monte Carlo simulations.
Resumo:
The aim of our study was to assess the diagnostic usefulness of the gray level parameters to distinguish osteolytic lesions using radiological images. Materials and Methods: A retrospective study was carried out. A total of 76 skeletal radiographs of osteolytic metastases and 67 radiographs of multiple myeloma were used. The cases were classified into nonflat (MM1 and OL1) and flat bones (MM2 and OL2). These radiological images were analyzed by using a computerized method. The parameters calculated were mean, standard deviation, and coefficient of variation (MGL, SDGL, and CVGL) based on gray level histogram analysis of a region-of-interest.Diagnostic utility was quantified bymeasurement of parameters on osteolyticmetastases andmultiplemyeloma, yielding quantification of area under the receiver operating characteristic (ROC) curve (AUC). Results: Flat bone groups (MM2 and OL2) showed significant differences in mean values of MGL ( = 0.048) and SDGL ( = 0.003). Their corresponding values of AUC were 0.758 for MGL and 0.883 for SDGL in flat bones. In nonflat bones these gray level parameters do not show diagnostic ability. Conclusion: The gray level parametersMGL and SDGL show a good discriminatory diagnostic ability to distinguish between multiple myeloma and lytic metastases in flat bones.
Resumo:
Chironomidae spatial distribution was investigated at 63 near-pristine sites in 22 catchments of the Iberian Mediterranean coast. We used partial redundancy analysis to study Chironomidae community responses to a number of environmental factors acting at several spatial scales. The percentage of variation explained by local factors (23.3%) was higher than that explained by geographical (8.5%) or regional factors(8%). Catchment area, longitude, pH, % siliceous rocks in the catchment, and altitude were the best predictors of Chironomidae assemblages. We used a k-means cluster analysis to classified sites into 3 major groups based on Chironomidae assemblages. These groups were explained mainly by longitudinal zonation and geographical position, and were defined as 1) siliceous headwater streams, 2) mid-altitude streams with small catchment areas, and 3) medium-sized calcareous streams. Distinct species assemblages with associated indicator taxa were established for each stream category using IndVal analysis. Species responses to previously identified key environmental variables were determined, and optima and tolerances were established by weighted average regression. Distinct ecological requirements were observed among genera and among species of the same genus. Some genera were restricted to headwater systems (e.g., Diamesa), whereas others (e.g., Eukiefferiella) had wider ecological preferences but with distinct distributions among congenerics. In the present period of climate change, optima and tolerances of species might be a useful tool to predict responses of different species to changes in significant environmental variables, such as temperature and hydrology.