58 resultados para Linear chains, critical exponents, complex networks, vehicular traffic


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different microscopic models exhibiting self-organized criticality are studied numerically and analytically. Numerical simulations are performed to compute critical exponents, mainly the dynamical exponent, and to check universality classes. We find that various models lead to the same exponent, but this universality class is sensitive to disorder. From the dynamic microscopic rules we obtain continuum equations with different sources of noise, which we call internal and external. Different correlations of the noise give rise to different critical behavior. A model for external noise is proposed that makes the upper critical dimensionality equal to 4 and leads to the possible existence of a phase transition above d=4. Limitations of the approach of these models by a simple nonlinear equation are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uncorrelated random scale-free networks are useful null models to check the accuracy and the analytical solutions of dynamical processes defined on complex networks. We propose and analyze a model capable of generating random uncorrelated scale-free networks with no multiple and self-connections. The model is based on the classical configuration model, with an additional restriction on the maximum possible degree of the vertices. We check numerically that the proposed model indeed generates scale-free networks with no two- and three-vertex correlations, as measured by the average degree of the nearest neighbors and the clustering coefficient of the vertices of degree k, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the more challenging tasks in the understanding of dynamical properties of models on top of complex networks is to capture the precise role of multiplex topologies. In a recent paper, Gómez et al. [ Phys. Rev. Lett. 110 028701 (2013)], some of the authors proposed a framework for the study of diffusion processes in such networks. Here, we extend the previous framework to deal with general configurations in several layers of networks and analyze the behavior of the spectrum of the Laplacian of the full multiplex. We derive an interesting decoupling of the problem that allow us to unravel the role played by the interconnections of the multiplex in the dynamical processes on top of them. Capitalizing on this decoupling we perform an asymptotic analysis that allow us to derive analytical expressions for the full spectrum of eigenvalues. This spectrum is used to gain insight into physical phenomena on top of multiplex, specifically, diffusion processes and synchronizability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ever since their discovery as cellular counterparts of viral oncogenes more than 25 years ago, much progress has been made in understanding the complex networks of signal transduction pathways activated by oncogenic Ras mutations in human cancers. The activity of Ras is regulated by nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), and much emphasis has been put into the biochemical and structural analysis of the Ras/GAP complex. The mechanisms by which GAPs catalyze Ras-GTP hydrolysis have been clarified and revealed that oncogenic Ras mutations confer resistance to GAPs and remain constitutively active. However, it is yet unclear how cells coordinate the large and divergent GAP protein family to promote Ras inactivation and ensure a certain biological response. Different domain arrangements in GAPs to create differential protein-protein and protein-lipid interactions are probably key factors determining the inactivation of the 3 Ras isoforms H-, K-, and N-Ras and their effector pathways. In recent years, in vitro as well as cell- and animal-based studies examining GAP activity, localization, interaction partners, and expression profiles have provided further insights into Ras inactivation and revealed characteristics of several GAPs to exert specific and distinct functions. This review aims to summarize knowledge on the cell biology of RasGAP proteins that potentially contributes to differential regulation of spatiotemporal Ras signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the behavior of the random-bond Ising model at zero temperature by numerical simulations for a variable amount of disorder. The model is an example of systems exhibiting a fluctuationless first-order phase transition similar to some field-induced phase transitions in ferromagnetic systems and the martensitic phase transition appearing in a number of metallic alloys. We focus on the study of the hysteresis cycles appearing when the external field is swept from positive to negative values. By using a finite-size scaling hypothesis, we analyze the disorder-induced phase transition between the phase exhibiting a discontinuity in the hysteresis cycle and the phase with the continuous hysteresis cycle. Critical exponents characterizing the transition are obtained. We also analyze the size and duration distributions of the magnetization jumps (avalanches).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ches. The critical point is characterized by a set of critical exponents, which are consistent with the universal values proposed from the study of other simpler models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of vacancy concentration on the behavior of the three-dimensional random field Ising model with metastable dynamics is studied. We have focused our analysis on the number of spanning avalanches which allows us a clear determination of the critical line where the hysteresis loops change from continuous to discontinuous. By a detailed finite-size scaling analysis we determine the phase diagram and numerically estimate the critical exponents along the whole critical line. Finally, we discuss the origin of the curvature of the critical line at high vacancy concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have systematically analyzed six different reticular models with quenched disorder and no thermal fluctuations exhibiting a field-driven first-order phase transition. We have studied the nonequilibrium transition, appearing when varying the amount of disorder, characterized by the change from a discontinuous hysteresis cycle (with one or more large avalanches) to a smooth one (with only tiny avalanches). We have computed critical exponents using finite size scaling techniques and shown that they are consistent with universal values depending only on the space dimensionality d.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple model exhibiting a noise-induced ordering transition (NIOT) and a noise-induced disordering transition (NIDT), in which the noise is purely multiplicative, is presented. Both transitions are found in two dimensions as well as in one dimension. We show analytically and numerically that the critical behavior of these two transitions is described by the so called multiplicative noise (MN) universality class. A computation of the set of critical exponents is presented in both d=1 and d=2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of searchability in decentralized complex networks is of great importance in computer science, economy, and sociology. We present a formalism that is able to cope simultaneously with the problem of search and the congestion effects that arise when parallel searches are performed, and we obtain expressions for the average search cost both in the presence and the absence of congestion. This formalism is used to obtain optimal network structures for a system using a local search algorithm. It is found that only two classes of networks can be optimal: starlike configurations, when the number of parallel searches is small, and homogeneous-isotropic configurations, when it is large.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a Potts model diluted by fully frustrated Ising spins. The model corresponds to a fully frustrated Potts model with variables having an integer absolute value and a sign. This model presents precursor phenomena of a glass transition in the high-temperature region. We show that the onset of these phenomena can be related to a thermodynamic transition. Furthermore, this transition can be mapped onto a percolation transition. We numerically study the phase diagram in two dimensions (2D) for this model with frustration and without disorder and we compare it to the phase diagram of (i) the model with frustration and disorder and (ii) the ferromagnetic model. Introducing a parameter that connects the three models, we generalize the exact expression of the ferromagnetic Potts transition temperature in 2D to the other cases. Finally, we estimate the dynamic critical exponents related to the Potts order parameter and to the energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A stochastic nonlinear partial differential equation is constructed for two different models exhibiting self-organized criticality: the Bak-Tang-Wiesenfeld (BTW) sandpile model [Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A 38, 364 (1988)] and the Zhang model [Phys. Rev. Lett. 63, 470 (1989)]. The dynamic renormalization group (DRG) enables one to compute the critical exponents. However, the nontrivial stable fixed point of the DRG transformation is unreachable for the original parameters of the models. We introduce an alternative regularization of the step function involved in the threshold condition, which breaks the symmetry of the BTW model. Although the symmetry properties of the two models are different, it is shown that they both belong to the same universality class. In this case the DRG procedure leads to a symmetric behavior for both models, restoring the broken symmetry, and makes accessible the nontrivial fixed point. This technique could also be applied to other problems with threshold dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a procedure for analyzing and characterizing complex networks. We apply this to the social network as constructed from email communications within a medium sized university with about 1700 employees. Email networks provide an accurate and nonintrusive description of the flow of information within human organizations. Our results reveal the self-organization of the network into a state where the distribution of community sizes is self-similar. This suggests that a universal mechanism, responsible for emergence of scaling in other self-organized complex systems, as, for instance, river networks, could also be the underlying driving force in the formation and evolution of social networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The observation that real complex networks have internal structure has important implication for dynamic processes occurring on such topologies. Here we investigate the impact of community structure on a model of information transfer able to deal with both search and congestion simultaneously. We show that networks with fuzzy community structure are more efficient in terms of packet delivery than those with pronounced community structure. We also propose an alternative packet routing algorithm which takes advantage of the knowledge of communities to improve information transfer and show that in the context of the model an intermediate level of community structure is optimal. Finally, we show that in a hierarchical network setting, providing knowledge of communities at the level of highest modularity will improve network capacity by the largest amount.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Economy, and consequently trade, is a fundamental part of human social organization which, until now, has not been studied within the network modeling framework. Here we present the first, to the best of our knowledge, empirical characterization of the world trade web, that is, the network built upon the trade relationships between different countries in the world. This network displays the typical properties of complex networks, namely, scale-free degree distribution, the small-world property, a high clustering coefficient, and, in addition, degree-degree correlation between different vertices. All these properties make the world trade web a complex network, which is far from being well described through a classical random network description.