56 resultados para Learning in multi-agent systems
Resumo:
This paper focuses on QoS routing with protection in an MPLS network over an optical layer. In this multi-layer scenario each layer deploys its own fault management methods. A partially protected optical layer is proposed and the rest of the network is protected at the MPLS layer. New protection schemes that avoid protection duplications are proposed. Moreover, this paper also introduces a new traffic classification based on the level of reliability. The failure impact is evaluated in terms of recovery time depending on the traffic class. The proposed schemes also include a novel variation of minimum interference routing and shared segment backup computation. A complete set of experiments proves that the proposed schemes are more efficient as compared to the previous ones, in terms of resources used to protect the network, failure impact and the request rejection ratio
Resumo:
This paper investigates the role of learning by private agents and the central bank (two-sided learning) in a New Keynesian framework in which both sides of the economy have asymmetric and imperfect knowledge about the true data generating process. We assume that all agents employ the data that they observe (which may be distinct for different sets of agents) to form beliefs about unknown aspects of the true model of the economy, use their beliefs to decide on actions, and revise these beliefs through a statistical learning algorithm as new information becomes available. We study the short-run dynamics of our model and derive its policy recommendations, particularly with respect to central bank communications. We demonstrate that two-sided learning can generate substantial increases in volatility and persistence, and alter the behavior of the variables in the model in a signifficant way. Our simulations do not converge to a symmetric rational expectations equilibrium and we highlight one source that invalidates the convergence results of Marcet and Sargent (1989). Finally, we identify a novel aspect of central bank communication in models of learning: communication can be harmful if the central bank's model is substantially mis-specified
Resumo:
Miralls deformables més i més grans, amb cada cop més actuadors estan sent utilitzats actualment en aplicacions d'òptica adaptativa. El control dels miralls amb centenars d'actuadors és un tema de gran interès, ja que les tècniques de control clàssiques basades en la seudoinversa de la matriu de control del sistema es tornen massa lentes quan es tracta de matrius de dimensions tan grans. En aquesta tesi doctoral es proposa un mètode per l'acceleració i la paral.lelitzacó dels algoritmes de control d'aquests miralls, a través de l'aplicació d'una tècnica de control basada en la reducció a zero del components més petits de la matriu de control (sparsification), seguida de l'optimització de l'ordenació dels accionadors de comandament atenent d'acord a la forma de la matriu, i finalment de la seva posterior divisió en petits blocs tridiagonals. Aquests blocs són molt més petits i més fàcils de fer servir en els càlculs, el que permet velocitats de càlcul molt superiors per l'eliminació dels components nuls en la matriu de control. A més, aquest enfocament permet la paral.lelització del càlcul, donant una com0onent de velocitat addicional al sistema. Fins i tot sense paral. lelització, s'ha obtingut un augment de gairebé un 40% de la velocitat de convergència dels miralls amb només 37 actuadors, mitjançant la tècnica proposada. Per validar això, s'ha implementat un muntatge experimental nou complet , que inclou un modulador de fase programable per a la generació de turbulència mitjançant pantalles de fase, i s'ha desenvolupat un model complert del bucle de control per investigar el rendiment de l'algorisme proposat. Els resultats, tant en la simulació com experimentalment, mostren l'equivalència total en els valors de desviació després de la compensació dels diferents tipus d'aberracions per als diferents algoritmes utilitzats, encara que el mètode proposat aquí permet una càrrega computacional molt menor. El procediment s'espera que sigui molt exitós quan s'aplica a miralls molt grans.
Resumo:
The speed of fault isolation is crucial for the design and reconfiguration of fault tolerant control (FTC). In this paper the fault isolation problem is stated as a constraint satisfaction problem (CSP) and solved using constraint propagation techniques. The proposed method is based on constraint satisfaction techniques and uncertainty space refining of interval parameters. In comparison with other approaches based on adaptive observers, the major advantage of the presented method is that the isolation speed is fast even taking into account uncertainty in parameters, measurements and model errors and without the monotonicity assumption. In order to illustrate the proposed approach, a case study of a nonlinear dynamic system is presented
Resumo:
The pituitary adenylate cyclase activating polypeptide (PACAP) type I receptor (PAC1) is a G-protein-coupled receptor binding the strongly conserved neuropeptide PACAP with 1000-fold higher affinity than the related peptide vasoactive intestinal peptide. PAC1-mediated signaling has been implicated in neuronal differentiation and synaptic plasticity. To gain further insight into the biological significance of PAC1-mediated signaling in vivo, we generated two different mutant mouse strains, harboring either a complete or a forebrain-specific inactivation of PAC1. Mutants from both strains show a deficit in contextual fear conditioning, a hippocampus-dependent associative learning paradigm. In sharp contrast, amygdala-dependent cued fear conditioning remains intact. Interestingly, no deficits in other hippocampus-dependent tasks modeling declarative learning such as the Morris water maze or the social transmission of food preference are observed. At the cellular level, the deficit in hippocampus-dependent associative learning is accompanied by an impairment of mossy fiber long-term potentiation (LTP). Because the hippocampal expression of PAC1 is restricted to mossy fiber terminals, we conclude that presynaptic PAC1-mediated signaling at the mossy fiber synapse is involved in both LTP and hippocampus-dependent associative learning.
Resumo:
A contemporary perspective on the tradeoff between transmit antenna diversity andspatial multiplexing is provided. It is argued that, in the context of most modern wirelesssystems and for the operating points of interest, transmission techniques that utilizeall available spatial degrees of freedom for multiplexing outperform techniques that explicitlysacrifice spatial multiplexing for diversity. In the context of such systems, therefore,there essentially is no decision to be made between transmit antenna diversity and spatialmultiplexing in MIMO communication. Reaching this conclusion, however, requires thatthe channel and some key system features be adequately modeled and that suitable performancemetrics be adopted; failure to do so may bring about starkly different conclusions. Asa specific example, this contrast is illustrated using the 3GPP Long-Term Evolution systemdesign.
Resumo:
Multi-national societies present a complex setting for the politics of immigration, as migration’s linguistic, economic and cultural effects may coincide with existing contestation over nationhood between sub-units and the central state. Empirically, though, political actors only sometimes, and in some places, explicitly connect the politics of immigration to the stakes of multi-level politics. With reference to Canada, Belgium and the United Kingdom, this paper examines the conditions under which political leaders link immigration to ongoing debate about governance in multi-national societies. The paper argues that the distribution of policy competencies in the multi-level system is less important for shaping immigration and integration politics than is the perceived impact (positive or negative) on the sub-unit’s societal culture or its power relationship with the center. Immigration and integration are more often politicized where center and sub-unit hold divergent views on migration and its place in national identity.
Resumo:
This paper investigates the role of learning by private agents and the central bank(two-sided learning) in a New Keynesian framework in which both sides of the economyhave asymmetric and imperfect knowledge about the true data generating process. Weassume that all agents employ the data that they observe (which may be distinct fordifferent sets of agents) to form beliefs about unknown aspects of the true model ofthe economy, use their beliefs to decide on actions, and revise these beliefs througha statistical learning algorithm as new information becomes available. We study theshort-run dynamics of our model and derive its policy recommendations, particularlywith respect to central bank communications. We demonstrate that two-sided learningcan generate substantial increases in volatility and persistence, and alter the behaviorof the variables in the model in a significant way. Our simulations do not convergeto a symmetric rational expectations equilibrium and we highlight one source thatinvalidates the convergence results of Marcet and Sargent (1989). Finally, we identifya novel aspect of central bank communication in models of learning: communicationcan be harmful if the central bank's model is substantially mis-specified.
Resumo:
Standard methods for the analysis of linear latent variable models oftenrely on the assumption that the vector of observed variables is normallydistributed. This normality assumption (NA) plays a crucial role inassessingoptimality of estimates, in computing standard errors, and in designinganasymptotic chi-square goodness-of-fit test. The asymptotic validity of NAinferences when the data deviates from normality has been calledasymptoticrobustness. In the present paper we extend previous work on asymptoticrobustnessto a general context of multi-sample analysis of linear latent variablemodels,with a latent component of the model allowed to be fixed across(hypothetical)sample replications, and with the asymptotic covariance matrix of thesamplemoments not necessarily finite. We will show that, under certainconditions,the matrix $\Gamma$ of asymptotic variances of the analyzed samplemomentscan be substituted by a matrix $\Omega$ that is a function only of thecross-product moments of the observed variables. The main advantage of thisis thatinferences based on $\Omega$ are readily available in standard softwareforcovariance structure analysis, and do not require to compute samplefourth-order moments. An illustration with simulated data in the context ofregressionwith errors in variables will be presented.
Resumo:
We extend to score, Wald and difference test statistics the scaled and adjusted corrections to goodness-of-fit test statistics developed in Satorra and Bentler (1988a,b). The theory is framed in the general context of multisample analysis of moment structures, under general conditions on the distribution of observable variables. Computational issues, as well as the relation of the scaled and corrected statistics to the asymptotic robust ones, is discussed. A Monte Carlo study illustrates thecomparative performance in finite samples of corrected score test statistics.
Resumo:
In this work I study the stability of the dynamics generated by adaptivelearning processes in intertemporal economies with lagged variables. Iprove that determinacy of the steady state is a necessary condition for the convergence of the learning dynamics and I show that the reciprocal is not true characterizing the economies where convergence holds. In the case of existence of cycles I show that there is not, in general, a relationship between determinacy and convergence of the learning process to the cycle. I also analyze the expectational stability of these equilibria.
Resumo:
This paper describes a bibliographic analysis of the vision of Marshal McLuhan and the vision adopted by diverse current authors regarding the use of new interactive learning technologies. The paper also analyzes the transformation that will have to take place in the formal surroundings of education in order to improve their social function. The main points of view and contributions made by diverse authors are discussed. It is important that all actors involved in the educational process take in consideration these contributions in order to be ready for future changes.
Resumo:
This work is focused on the study of the fine speckle contrast present in planar view observations of matched and mismatched InGaAs layers grown by molecular beam epitaxy on InP substrates. Our results provide experimental evidence of the evolution of this fine structure with the mismatch, layer thickness, and growth temperature. The correlation of the influence of all these parameters on the appearance of the contrast modulation points to the development of the fine structure during the growth. Moreover, as growth proceeds, this structure shows a dynamic behavior which depends on the intrinsic layer substrate stress.
Resumo:
We have analyzed the effects of the addition of external noise to nondynamical systems displaying intrinsic noise, and established general conditions under which stochastic resonance appears. The criterion we have found may be applied to a wide class of nondynamical systems, covering situations of different nature. Some particular examples are discussed in detail.