113 resultados para Lattice-MCM
Resumo:
The short-range resonating-valence-bond (RVB) wave function with nearest-neighbor (NN) spin pairings only is investigated as a possible description for the Heisenberg model on a square-planar lattice. A type of long-range order associated to this RVB Ansatz is identified along with some qualitative consequences involving lattice distortions, excitations, and their coupling.
Resumo:
We present a theoretical study of the recently observed dynamical regimes of paramagnetic colloidal particles externally driven above a regular lattice of magnetic bubbles [P. Tierno, T. H. Johansen, and T. M. Fischer, Phys. Rev. Lett. 99, 038303 (2007)]. An external precessing magnetic field alters the potential generated by the surface of the film in such a way to either drive the particle circularly around one bubble, ballistically through the array, or in triangular orbits on the interstitial regions between the bubbles. In the ballistic regime, we observe different trajectories performed by the particles phase locked with the external driving. Superdiffusive motion, which was experimentally found bridging the localized and delocalized dynamics, emerge only by introducing a certain degree of randomness into the bubbles size distribution.
Resumo:
We examine the patterns formed by injecting nitrogen gas into the center of a horizontal, radial Hele-Shaw cell filled with paraffin oil. We use smooth plates and etched plates with lattices having different amounts of defects (010 %). In all cases, a quantitative measure of the pattern ramification shows a regular trend with injection rate and cell gap, such that the dimensionless perimeter scales with the dimensionless time. By adding defects to the lattice, we observe increased branching in the pattern morphologies. However, even in this case, the scaling behavior persists. Only the prefactor of the scaling function shows a dependence on the defect density. For different lattice defect densities, we examine the nature of the different morphology phases.
Resumo:
We report Monte Carlo results for a nonequilibrium Ising-like model in two and three dimensions. Nearest-neighbor interactions J change sign randomly with time due to competing kinetics. There follows a fast and random, i.e., spin-configuration-independent diffusion of Js, of the kind that takes place in dilute metallic alloys when magnetic ions diffuse. The system exhibits steady states of the ferromagnetic (antiferromagnetic) type when the probability p that J>0 is large (small) enough. No counterpart to the freezing phenomena found in quenched spin glasses occurs. We compare our results with existing mean-field and exact ones, and obtain information about critical behavior.
Resumo:
We report on the study of nonequilibrium ordering in the reaction-diffusion lattice gas. It is a kinetic model that relaxes towards steady states under the simultaneous competition of a thermally activated creation-annihilation $(reaction$) process at temperature T, and a diffusion process driven by a heat bath at temperature T?T. The phase diagram as one varies T and T, the system dimension d, the relative priori probabilities for the two processes, and their dynamical rates is investigated. We compare mean-field theory, new Monte Carlo data, and known exact results for some limiting cases. In particular, no evidence of Landau critical behavior is found numerically when d=2 for Metropolis rates but Onsager critical points and a variety of first-order phase transitions.
Resumo:
We study steady states in d-dimensional lattice systems that evolve in time by a probabilistic majority rule, which corresponds to the zero-temperature limit of a system with conflicting dynamics. The rule satisfies detailed balance for d=1 but not for d>1. We find numerically nonequilibrium critical points of the Ising class for d=2 and 3.
Resumo:
We report a Lattice-Boltzmann scheme that accounts for adsorption and desorption in the calculation of mesoscale dynamical properties of tracers in media of arbitrary complexity. Lattice Boltzmann simulations made it possible to solve numerically the coupled Navier-Stokes equations of fluid dynamics and Nernst-Planck equations of electrokinetics in complex, heterogeneous media. With the moment propagation scheme, it became possible to extract the effective diffusion and dispersion coefficients of tracers, or solutes, of any charge, e.g., in porous media. Nevertheless, the dynamical properties of tracers depend on the tracer-surface affinity, which is not purely electrostatic and also includes a species-specific contribution. In order to capture this important feature, we introduce specific adsorption and desorption processes in a lattice Boltzmann scheme through a modified moment propagation algorithm, in which tracers may adsorb and desorb from surfaces through kinetic reaction rates. The method is validated on exact results for pure diffusion and diffusion-advection in Poiseuille flows in a simple geometry. We finally illustrate the importance of taking such processes into account in the time-dependent diffusion coefficient in a more complex porous medium.
Resumo:
It is well-known that couples that look jointly for jobs in the same centralized labor market may cause instabilities. We demonstrate that for a natural preference domain for couples, namely the domain of responsive preferences, the existence of stable matchings can easily be established. However, a small deviation from responsiveness in one couple's preference relation that models the wish of a couple to be closer together may already cause instability. This demonstrates that the nonexistence of stable matchings in couples markets is not a singular theoretical irregularity. Our nonexistence result persists even when a weaker stability notion is used that excludes myopic blocking. Moreover, we show that even if preferences are responsive there are problems that do not arise for singles markets. Even though for couples markets with responsive preferences the set of stable matchings is nonempty, the lattice structure that this set has for singles markets does not carry over. Furthermore we demonstrate that the new algorithm adopted by the National Resident Matching Program to fill positions for physicians in the United States may cycle, while in fact a stable matchings does exist, and be prone to strategic manipulation if the members of a couple pretend to be single.
Resumo:
The proposed game is a natural extension of the Shapley and Shubik Assignment Game to the case where each seller owns a set of different objets instead of only one indivisible object. We propose definitions of pairwise stability and group stability that are adapted to our framework. Existence of both pairwise and group stable outcomes is proved. We study the structure of the group stable set and we finally prove that the set of group stable payoffs forms a complete lattice with one optimal group stable payoff for each side of the market.
Resumo:
We give a case-free proof that the lattice of noncrossing partitions associated to any finite real reflection group is EL-shellable. Shellability of these lattices was open for the groups of type Dn and those of exceptional type and rank at least three.
Resumo:
Estudi elaborat a partir d’una estada a la Universitat Nacional de Yokohama des de maig fins a mitjans de juny del 2006. S'ha estudiat el comportament fàssic i la preparació de sílica mesoporosa pels nous tensioactius fluorats d'estructura C8F17SO2(C3H7)N(C2H4O)nH (abreujat C8F17(EO)n. El tensioactiu C8F17(EO)n forma micel•les allargades i cristalls líquids en aigua, i per tant pot ser adequat per a la preparació de materials mesoporosos. Sílica mesoestructurada es va preparar pel mètode de precipitació per autoagregació cooperativa. Un estudi sistemàtic es va realitzar, investigant la influència de les concentracions de tensioactiu i precursor (TEOS), l’efecte del pH i de la longitud de cadena de poliòxid d’etilè. Els materials es van caracteritzar per raigs X a angle petit (SAXS), sorció de nitrògen i TEM. Els materials obtinguts presenten diàmetres de por petits i parets de por gruixudes. A més, aquests materials posseeixen altes superfícies específiques, que s’han obtingut emprant concentracions de tensioactiu petites, produint parets de por robustes sense microporositat significativa. La superfície específica es manté durant el procés de calcinació, malgrat un petit encongiment degut a l’entrecreuament de la sílica. Els materials de sílica obtinguts han mostrat ser significativament més robustos que altres materials similars descrits a la bibliografia, com la sílica MCM-41.
Resumo:
Estudi elaborat a partir d’una estada al Stony Brook University al juliol del 2006. El RbTiOPO4 (RTP) monocristal•lí és un material d' òptica no lineal molt rellevant i utilitzat en la tecnologia làser actual, químicament molt estable i amb unes propietats físiques molt destacades, entre elles destaquen els alts coeficients electro-òptics i l'alt llindar de dany òptic que presenta. En els últims anys s’està utilitzant tecnològicament en aplicacions d'òptica no lineal en general i electro-òptiques en particular. En alguns casos ja ha substituït, millorant prestacions, a materials tals com el KTP o el LNB(1). Dopant RTP amb ions lantànids (Ln3+) (2-4), el material es converteix en un material làser auto-doblador de freqüència, combinant les seves propietats no lineals amb les de matriu làser. El RTP genera radiació de segon harmònic (SHG) a partir d’un feix fonamental amb longituds d’ona inferiors a 990 nm, que és el límit que presenta el KTP.La determinació de la ubicació estructural i l’estudi de l'entorn local del ions actius làser és de fonamental importància per a la correcta interpretació de les propietats espectroscòpiques d’aquest material. Mesures de difracció de neutrons sobre mostra de pols cristal•lí mostren que els ions Nb5+ i Ln3+ només substitueixin posicions de Ti4+ (8-9). Estudis molt recents d'EPR (electron paramagnetic resonance) semblen indicar que quan la concentració d'ió Ln3+ es baixa, aquest ió presenta la tendència a substituir l'ió alcalí present a l'estructura (10).Després dels resultats obtinguts en el present treball a partir de la tècnica EXAFS a la instal•lació sincrotò del Brookhaven National Laboratory/State University of New York (Stony Brook) es pot concloure definitivament que els ions Nb s’ubiquen en la posició Ti (1) i que els ions Yb3+ es distribueixen paritariament en les dues posicions del Ti (1 i 2). Aquests resultats aporten una valuosa informació per a la correcta interpretació dels espectres, tant d’absorció com d’emissió, del material i per la avaluació dels paràmetres del seu comportament durant l'acció làser.
Resumo:
The Stanley lattice, Tamari lattice and Kreweras lattice are three remarkable orders defined on the set of Catalan objects of a given size. These lattices are ordered by inclusion: the Stanley lattice is an extension of the Tamari lattice which is an extension of the Kreweras lattice. The Stanley order can be defined on the set of Dyck paths of size n as the relation of being above. Hence, intervals in the Stanley lattice are pairs of non-crossing Dyck paths. In a former article, the second author defined a bijection Φ between pairs of non-crossing Dyck paths and the realizers of triangulations (or Schnyder woods). We give a simpler description of the bijection Φ. Then, we study the restriction of Φ to Tamari’s and Kreweras’ intervals. We prove that Φ induces a bijection between Tamari intervals and minimal realizers. This gives a bijection between Tamari intervals and triangulations. We also prove that Φ induces a bijection between Kreweras intervals and the (unique) realizers of stack triangulations. Thus, Φ induces a bijection between Kreweras intervals and stacktriangulations which are known to be in bijection with ternary trees.
Resumo:
To a finite graph there corresponds a free partially commutative group: with the given graph as commutation graph. In this paper we construct an orthogonality theory for graphs and their corresponding free partially commutative groups. The theory developed here provides tools for the study of the structure of partially commutative groups, their universal theory and automorphism groups. In particular the theory is applied in this paper to the centraliser lattice of such groups.
Resumo:
In the present paper, we study the geometric discrepancy with respect to families of rotated rectangles. The well-known extremal cases are the axis-parallel rectangles (logarithmic discrepancy) and rectangles rotated in all possible directions (polynomial discrepancy). We study several intermediate situations: lacunary sequences of directions, lacunary sets of finite order, and sets with small Minkowski dimension. In each of these cases, extensions of a lemma due to Davenport allow us to construct appropriate rotations of the integer lattice which yield small discrepancy.