18 resultados para Large-scale Analysis
Resumo:
Conventional methods of gene prediction rely on the recognition of DNA-sequence signals, the coding potential or the comparison of a genomic sequence with a cDNA, EST, or protein database. Reasons for limited accuracy in many circumstances are species-specific training and the incompleteness of reference databases. Lately, comparative genome analysis has attracted increasing attention. Several analysis tools that are based on human/mouse comparisons are already available. Here, we present a program for the prediction of protein-coding genes, termed SGP-1 (Syntenic Gene Prediction), which is based on the similarity of homologous genomic sequences. In contrast to most existing tools, the accuracy of SGP-1 depends little on species-specific properties such as codon usage or the nucleotide distribution. SGP-1 may therefore be applied to nonstandard model organisms in vertebrates as well as in plants, without the need for extensive parameter training. In addition to predicting genes in large-scale genomic sequences, the program may be useful to validate gene structure annotations from databases. To this end, SGP-1 output also contains comparisons between predicted and annotated gene structures in HTML format. The program can be accessed via a Web server at http://soft.ice.mpg.de/sgp-1. The source code, written in ANSI C, is available on request from the authors.
Resumo:
Background: We present the results of EGASP, a community experiment to assess the state-ofthe-art in genome annotation within the ENCODE regions, which span 1% of the human genomesequence. The experiment had two major goals: the assessment of the accuracy of computationalmethods to predict protein coding genes; and the overall assessment of the completeness of thecurrent human genome annotations as represented in the ENCODE regions. For thecomputational prediction assessment, eighteen groups contributed gene predictions. Weevaluated these submissions against each other based on a ‘reference set’ of annotationsgenerated as part of the GENCODE project. These annotations were not available to theprediction groups prior to the submission deadline, so that their predictions were blind and anexternal advisory committee could perform a fair assessment.Results: The best methods had at least one gene transcript correctly predicted for close to 70%of the annotated genes. Nevertheless, the multiple transcript accuracy, taking into accountalternative splicing, reached only approximately 40% to 50% accuracy. At the coding nucleotidelevel, the best programs reached an accuracy of 90% in both sensitivity and specificity. Programsrelying on mRNA and protein sequences were the most accurate in reproducing the manuallycurated annotations. Experimental validation shows that only a very small percentage (3.2%) of the selected 221 computationally predicted exons outside of the existing annotation could beverified.Conclusions: This is the first such experiment in human DNA, and we have followed thestandards established in a similar experiment, GASP1, in Drosophila melanogaster. We believe theresults presented here contribute to the value of ongoing large-scale annotation projects and shouldguide further experimental methods when being scaled up to the entire human genome sequence.
Resumo:
A large proportion of the death toll associated with malaria is a consequence of malaria infection during pregnancy, causing up to 200,000 infant deaths annually. We previously published the first extensive genetic association study of placental malaria infection, and here we extend this analysis considerably, investigating genetic variation in over 9,000 SNPs in more than 1,000 genes involved in immunity and inflammation for their involvement in susceptibility to placental malaria infection. We applied a new approach incorporating results from both single gene analysis as well as gene-gene interactionson a protein-protein interaction network. We found suggestive associations of variants in the gene KLRK1 in the single geneanalysis, as well as evidence for associations of multiple members of the IL-7/IL-7R signalling cascade in the combined analysis. To our knowledge, this is the first large-scale genetic study on placental malaria infection to date, opening the door for follow-up studies trying to elucidate the genetic basis of this neglected form of malaria.