19 resultados para Kim, Jaegwon: Physicalism, or something near enough
Resumo:
MGRO J2019+37 is an unidentified extended source of very high energy gamma-rays originally reported by the Milagro Collaboration as the brightest TeV source in the Cygnus region. Its extended emission could be powered by either a single or several sources. The GeV pulsar AGL J2020.5+3653 , discovered by AGILE and associated with PSR J2021+3651 , could contribute to the emission from MGRO J2019+37 . Aims. Our aim is to identify radio and near-infrared sources in the field of the extended TeV source MGRO J2019+37 , and study potential counterparts to explain its emission. Methods. We surveyed a region of about 6 square degrees with the Giant Metrewave Radio Telescope (GMRT) at the frequency 610 MHz. We also observed the central square degree of this survey in the near-infrared -band using the 3.5 m telescope in Calar Alto. Archival X-ray observations of some specific fields are included. VLBI observations of an interesting radio source were performed. We explored possible scenarios to produce the multi-TeV emission from MGRO J2019+37 and studied which of the sources could be the main particle accelerator. Results. We present a catalogue of 362 radio sources detected with the GMRT in the field of MGRO J2019+37 , and the results of a cross-correlation of this catalog with one obtained at near-infrared wavelengths, which contains ~3105 sources, as well as with available X-ray observations of the region. Some peculiar sources inside the ~1° uncertainty region of the TeV emission from MGRO J2019+37 are discussed in detail, including the pulsar PSR J2021+3651 and its pulsar wind nebula PWN G75.2+0.1 , two new radio-jet sources, the H II region Sh 2-104 containing two star clusters, and the radio source NVSS J202032+363158 . We also find that the hadronic scenario is the most likely in case of a single accelerator, and discuss the possible contribution from the sources mentioned above. Conclusions. Although the radio and GeV pulsar PSR J2021+3651 / AGL J2020.5+3653 and its associated pulsar wind nebula PWN G75.2+0.1 can contribute to the emission from MGRO J2019+37 , extrapolation of the GeV spectrum does not explain the detected multi-TeV flux. Other sources discussed here could contribute to the emission of the Milagro source.
Resumo:
We present a sample of three large near-relativistic (>50 keV) electron events observed in 2001 by both the ACE and the Ulysses spacecraft, when Ulysses was at high-northern latitudes (>60°) and close to 2 AU. Despite the large latitudinal distance between the two spacecraft, electrons injected near the Sun reached both heliospheric locations. All three events were associated with large solar flares, strong decametric type II radio bursts and accompanied by wide (>212°) and fast (>1400 km s-1) coronal mass ejections (CMEs). We use advanced interplanetary transport simulations and make use of the directional intensities observed in situ by the spacecraft to infer the electron injection profile close to the Sun and the interplanetary transport conditions at both low and high latitudes. For the three selected events, we find similar interplanetary transport conditions at different heliolatitudes for a given event, with values of the mean free path ranging from 0.04 AU to 0.27 AU. We find differences in the injection profiles inferred for each spacecraft. We investigate the role that sector boundaries of the heliospheric current sheet (HCS) have on determining the characteristics of the electron injection profiles. Extended injection profiles, associated with coronal shocks, are found if the magnetic footpoints of the spacecraft lay in the same magnetic sector as the associated flare, while intermittent sparse injection episodes appear when the spacecraft footpoints are in the opposite sector or a wrap in the HCS bounded the CME structure.
Resumo:
Context. MGRO J2019+37 is an unidentified extended source of very high energy gamma-rays originally reported by the Milagro Collaboration as the brightest TeV source in the Cygnus region. Its extended emission could be powered by either a single or several sources. The GeV pulsar AGL J2020.5+3653, discovered by AGILE and associated with PSR J2021+3651, could contribute to the emission from MGRO J2019+37. Our aim is to identify radio and near-infrared sources in the field of the extended TeV source MGRO J2019+37, and study potential counterparts to explain its emission. Methods: We surveyed a region of about 6 square degrees with the Giant Metrewave Radio Telescope (GMRT) at the frequency 610 MHz. We also observed the central square degree of this survey in the near-infrared Ks-band using the 3.5 m telescope in Calar Alto. Archival X-ray observations of some specific fields are included. VLBI observations of an interesting radio source were performed. We explored possible scenarios to produce the multi-TeV emission from MGRO J2019+37 and studied which of the sources could be the main particle accelerator. Results: We present a catalogue of 362 radio sources detected with the GMRT in the field of MGRO J2019+37, and the results of a cross-correlation of this catalog with one obtained at near-infrared wavelengths, which contains ∼3 × 105 sources, as well as with available X-ray observations of the region. Some peculiar sources inside the ∼1◦ uncertainty region of the TeV emission from MGRO J2019+37 are discussed in detail, including the pulsar PSR J2021+3651 and its pulsar wind nebula PWN G75.2+0.1, two new radio-jet sources, the Hii region Sh 2-104 containing two star clusters, and the radio source NVSS J202032+363158. We also find that the hadronic scenario is the most likely in case of a single accelerator, and discuss the possible contribution from the sources mentioned above. Conclusions: Although the radio and GeV pulsar PSR J2021+3651 / AGL J2020.5+3653 and its associated pulsar wind nebula PWN G75.2+0.1 can contribute to the emission from MGRO J2019+37, extrapolation of the GeV spectrum does not explain the detected multi-TeV flux. Other sources discussed here could contribute to the emission of the Milagro source
Resumo:
Comptar amb sistemes sofisticats de gestió o programes ERP (Enterprise Resource Planning) no és suficient per a les organitzacions. Per a què aquests recursos donin resultats adequats i actualitzats, la informació d’entrada ha de llegir-se de forma automàtica, per aconseguir estalviar en recursos, eliminació d’errors i assegurar el compliment de la qualitat. Per aquest motiu és important comptar amb eines i serveis d’identificació automàtica i col•lecció de dades. Els principals objectius a assolir (a partir de la introducció al lector de la importància dels sistemes logístics d’identificació en un entorn global d’alta competitivitat), són conèixer i comprendre el funcionament de les tres principals tecnologies existents al mercat (codis de barres lineals, codis de barres bidimensionals i sistemes RFID), veure en quin estat d’implantació es troba cadascuna i les seves principals aplicacions. Un cop realitzat aquest primer estudi es pretén comparar les tres tecnologies per o poder obtenir perspectives de futur en l’àmbit de l’autoidentificació. A partir de la situació actual i de les necessitats de les empreses, juntament amb el meravellós món que sembla obrir la tecnologia RFID (Radio Frequency Identification), la principal conclusió a la que s’arribarà és que malgrat les limitacions tècniques dels codis de barres lineals, aquests es troben completament integrats a tota la cadena logística gràcies a l’estandarització i la utilització d’un llenguatge comú, sota el nom de simbologies GTIN (Global Trade Item Number), durant tota la cadena de subministres que garanteixen total traçabilitat dels productes gràcies en part a la gestió de les bases de dades i del flux d’informació. La tecnologia RFUD amb l’EPC (Electronic Product Code) supera aquestes limitacions, convertint-se en el màxim candidat per a substituir els limitats codis de barres. Tot i això, RFID, amb l’EPC, no serà un adequat identificador logístic fins que es superin importants barreres, com són la falta d’estandarització i l’elevat cost d’implantació.