164 resultados para Jump-diffusion Equations
Resumo:
We extend a previous model of the Neolithic transition in Europe [J. Fort and V. Méndez, Phys. Rev. Lett. 82, 867 (1999)] by taking two effects into account: (i) we do not use the diffusion approximation (which corresponds to second-order Taylor expansions), and (ii) we take proper care of the fact that parents do not migrate away from their children (we refer to this as a time-order effect, in the sense that it implies that children grow up with their parents, before they become adults and can survive and migrate). We also derive a time-ordered, second-order equation, which we call the sequential reaction-diffusion equation, and use it to show that effect (ii) is the most important one, and that both of them should in general be taken into account to derive accurate results. As an example, we consider the Neolithic transition: the model predictions agree with the observed front speed, and the corrections relative to previous models are important (up to 70%)
Resumo:
It is well known that the Neolithic transition spread across Europe at a speed of about 1 km/yr. This result has been previously interpreted as a range expansion of the Neolithic driven mainly by demic diffusion (whereas cultural diffusion played a secondary role). However, a long-standing problem is whether this value (1 km/yr) and its interpretation (mainly demic diffusion) are characteristic only of Europe or universal (i.e. intrinsic features of Neolithic transitions all over the world). So far Neolithic spread rates outside Europe have been barely measured, and Neolithic spread rates substantially faster than 1 km/yr have not been previously reported. Here we show that the transition from hunting and gathering into herding in southern Africa spread at a rate of about 2.4 km/yr, i.e. about twice faster than the European Neolithic transition. Thus the value 1 km/yr is not a universal feature of Neolithic transitions in the world. Resorting to a recent demic-cultural wave-of-advance model, we also find that the main mechanism at work in the southern African Neolithic spread was cultural diffusion (whereas demic diffusion played a secondary role). This is in sharp contrast to the European Neolithic. Our results further suggest that Neolithic spread rates could be mainly driven by cultural diffusion in cases where the final state of this transition is herding/pastoralism (such as in southern Africa) rather than farming and stockbreeding (as in Europe)
Resumo:
We derive analytical expressions for the propagation speed of downward combustion fronts of thin solid fuels with a background flow initially at rest. The classical combustion model for thin solid fuels that consists of five coupled reaction-convection-diffusion equations is here reduced into a single equation with the gas temperature as the single variable. For doing so we apply a two-zone combustion model that divides the system into a preheating region and a pyrolyzing region. The speed of the combustion front is obtained after matching the temperature and its derivative at the location that separates both regions.We also derive a simplified version of this analytical expression expected to be valid for a wide range of cases. Flame front velocities predicted by our analyticalexpressions agree well with experimental data found in the literature for a large variety of cases and substantially improve the results obtained from a previous well-known analytical expression
Resumo:
The front speed of the Neolithic (farmer) spread in Europe decreased as it reached Northern latitudes, where the Mesolithic (huntergatherer) population density was higher. Here, we describe a reaction diffusion model with (i) an anisotropic dispersion kernel depending on the Mesolithicpopulation density gradient and (ii) a modified population growth equation. Both effects are related to the space available for the Neolithic population. The model is able to explain the slowdown of the Neolithic front as observed from archaeological data
Resumo:
We present an approach to determining the speed of wave-front solutions to reaction-transport processes. This method is more accurate than previous ones. This is explicitly shown for several cases of practical interest: (i) the anomalous diffusion reaction, (ii) reaction diffusion in an advective field, and (iii) time-delayed reaction diffusion. There is good agreement with the results of numerical simulations
Resumo:
The classical wave-of-advance model of the neolithic transition (i.e., the shift from hunter-gatherer to agricultural economies) is based on Fisher's reaction-diffusion equation. Here we present an extension of Einstein's approach to Fickian diffusion, incorporating reaction terms. On this basis we show that second-order terms in the reaction-diffusion equation, which have been neglected up to now, are not in fact negligible but can lead to important corrections. The resulting time-delayed model agrees quite well with observations
Resumo:
Glioblastomas are highly diffuse, malignant tumors that have so far evaded clinical treatment. The strongly invasive behavior of cells in these tumors makes them very resistant to treatment, and for this reason both experimental and theoretical efforts have been directed toward understanding the spatiotemporal pattern of tumor spreading. Although usual models assume a standard diffusion behavior, recent experiments with cell cultures indicate that cells tend to move in directions close to that of glioblastoma invasion, thus indicating that a biasedrandom walk model may be much more appropriate. Here we show analytically that, for realistic parameter values, the speeds predicted by biased dispersal are consistent with experimentally measured data. We also find that models beyond reaction–diffusion–advection equations are necessary to capture this substantial effect of biased dispersal on glioblastoma spread
Resumo:
The speed and width of front solutions to reaction-dispersal models are analyzed both analytically and numerically. We perform our analysis for Laplace and Gaussian distribution kernels, both for delayed and nondelayed models. The results are discussed in terms of the characteristic parameters of the models
Resumo:
A pacemaker, regularly emitting chemical waves, is created out of noise when an excitable photosensitive Belousov-Zhabotinsky medium, strictly unable to autonomously initiate autowaves, is forced with a spatiotemporal patterned random illumination. These experimental observations are also reproduced numerically by using a set of reaction-diffusion equations for an activator-inhibitor model, and further analytically interpreted in terms of genuine coupling effects arising from parametric fluctuations. Within the same framework we also address situations of noise-sustained propagation in subexcitable media.
Resumo:
We present an analytic and numerical study of the effects of external fluctuations in active media. Our analytical methodology transforms the initial stochastic partial differential equations into an effective set of deterministic reaction-diffusion equations. As a result we are able to explain and make quantitative predictions on the systematic and constructive effects of the noise, for example, target patterns created out of noise and traveling or spiral waves sustained by noise. Our study includes the case of realistic noises with temporal and spatial structures.
Resumo:
We consider the distribution of cross sections of clusters and the density-density correlation functions for the A+B¿0 reaction. We solve the reaction-diffusion equations numerically for random initial distributions of reactants. When both reactant species have the same diffusion coefficients the distribution of cross sections and the correlation functions scale with the diffusion length and obey superuniversal laws (independent of dimension). For different diffusion coefficients the correlation functions still scale, but the scaling functions depend on the dimension and on the diffusion coefficients. Furthermore, we display explicitly the peculiarities of the cluster-size distribution in one dimension.
Resumo:
The scaling up of the Hot Wire Chemical Vapor Deposition (HW-CVD) technique to large deposition area can be done using a catalytic net of equal spaced parallel filaments. The large area deposition limit is defined as the limit whenever a further increment of the catalytic net area does not affect the properties of the deposited film. This is the case when a dense catalytic net is spread on a surface considerably larger than that of the film substrate. To study this limit, a system able to hold a net of twelve wires covering a surface of about 20 cm x 20 cm was used to deposit amorphous (a-Si:H) and microcrystalline (μc-Si:H) silicon over a substrate of 10 cm x 10 cm placed at a filament-substrate distance ranging from 1 to 2 cm. The uniformity of the film thickness d and optical constants, n(x, λ) and α(x,¯hω), was studied via transmission measurements. The thin film uniformity as a function of the filament-substrate distance was studied. The experimental thickness profile was compared with the theoretical result obtained solving the diffusion equations. The optimization of the filament-substrate distance allowed obtaining films with inhomogeneities lower than ±2.5% and deposition rates higher than 1 nm/s and 4.5 nm/s for (μc-Si:H) and (a-Si:H), respectively.
Resumo:
We present an analytic and numerical study of the effects of external fluctuations in active media. Our analytical methodology transforms the initial stochastic partial differential equations into an effective set of deterministic reaction-diffusion equations. As a result we are able to explain and make quantitative predictions on the systematic and constructive effects of the noise, for example, target patterns created out of noise and traveling or spiral waves sustained by noise. Our study includes the case of realistic noises with temporal and spatial structures.
Resumo:
We consider the distribution of cross sections of clusters and the density-density correlation functions for the A+B¿0 reaction. We solve the reaction-diffusion equations numerically for random initial distributions of reactants. When both reactant species have the same diffusion coefficients the distribution of cross sections and the correlation functions scale with the diffusion length and obey superuniversal laws (independent of dimension). For different diffusion coefficients the correlation functions still scale, but the scaling functions depend on the dimension and on the diffusion coefficients. Furthermore, we display explicitly the peculiarities of the cluster-size distribution in one dimension.
Resumo:
A pacemaker, regularly emitting chemical waves, is created out of noise when an excitable photosensitive Belousov-Zhabotinsky medium, strictly unable to autonomously initiate autowaves, is forced with a spatiotemporal patterned random illumination. These experimental observations are also reproduced numerically by using a set of reaction-diffusion equations for an activator-inhibitor model, and further analytically interpreted in terms of genuine coupling effects arising from parametric fluctuations. Within the same framework we also address situations of noise-sustained propagation in subexcitable media.