53 resultados para Internal waves.
Resumo:
El proyecto Internal Message consiste en el desarrollo de un sistema de mensajería interna que comunique de forma fiable y segura a los usuarios de cualquier sistema de gestión de contenidos Joomla.
Resumo:
Topological indices have been applied to build QSAR models for a set of 20 antimalarial cyclic peroxy cetals. In order to evaluate the reliability of the proposed linear models leave-n-out and Internal Test Sets (ITS) approaches have been considered. The proposed procedure resulted in a robust and consensued prediction equation and here it is shown why it is superior to the employed standard cross-validation algorithms involving multilinear regression models
Resumo:
In a previous paper [J.Fort and V.Méndez, Phys. Rev. Lett. 82, 867 (1999)], the possible importance of higher-order terms in a human population wave of advance has been studied. However, only a few such terms were considered. Here we develop a theory including all higher-order terms. Results are in good agreement with the experimental evidence involving the expansion of agriculture in Europe
Resumo:
The relevance of the fragment relaxation energy term and the effect of the basis set superposition error on the geometry of the BF3⋯NH3 and C2H4⋯SO2 van der Waals dimers have been analyzed. Second-order Møller-Plesset perturbation theory calculations with the d95(d,p) basis set have been used to calculate the counterpoise-corrected barrier height for the internal rotations. These barriers have been obtained by relocating the stationary points on the counterpoise-corrected potential energy surface of the processes involved. The fragment relaxation energy can have a large influence on both the intermolecular parameters and barrier height. The counterpoise correction has proved to be important for these systems
Resumo:
Immigrant organisations in the City of Oslo receive support from the government for their daily operation. In order to receive such support, each organisation must be membership-based and have internal democratic procedures. This paper raises the question of how we can understand this combination of support for ethnic based organisations and requirements of membership and internal democracy. It explores the usefulness of two partly overlapping ways of understanding this policy and discusses their interrelationship. Firstly, within the context of the crisis of multiculturalism, the paper discusses whether this combination is based on the aim of strengthening the organisations’ procedural commitment to liberal-democratic principles. Secondly, the paper analyses whether requirements of membership and internal democracy can mainly be understood within the framework of the Nordic model of voluntary organisation. By comparing the policy at three empirical levels, the paper concludes that this combination can mainly be understood within the framework of the traditional historical Nordic model, but that there is an ambiguity in this policy related to minority rights.
Resumo:
We consider an entrepreneur that is the sole producer of a costreducing skill, but the entrepreneur that hires a team to usethe skill cannot prevent collusive trade for the innovation related knowledge between employees and competitors. We showthat there are two types of diffusion avoiding strategies forthe entrepreneur to preempt collusive communication i) settingup a large productive capacity (the traditional firm) and ii)keeping a small team (the lean firm). The traditional firm ischaracterized by its many "marginal" employees that work shortdays, receive flat wages and are incompletely informed about the innovation. The lean firm is small in number of employees,engages in complete information sharing among members, that are paid with stock option schemes. We find that the lean firm is superior to the traditional firm when technological entry costsare low and when the sector is immature.
Resumo:
In this paper we use a gravity model to study the trade performance of French and Spanishborder regions relatively to non-border regions, over the past two decades. We find that,controlling for their size, proximity and location characteristics, border regions trade onaverage between 62% and 193% more with their neighbouring country than other regions,and twice as much if they are endowed with good cross border transport infrastructures.Despite European integration, however, this trade outperformance has fallen for the mostperipheral regions within the EU. We show that this trend was linked in part to a shift in the propensity of foreign investors to move their affiliates from the regions near their home market to the regions bordering the EU core.
Resumo:
Spiral chemical waves subjected to a spatiotemporal random excitability are experimentally and numerically investigated in relation to the light-sensitive Belousov-Zhabotinsky reaction. Brownian motion is identified and characterized by an effective diffusion coefficient which shows a rather complex dependence on the time and length scales of the noise relative to those of the spiral. A kinematically based model is proposed whose results are in good qualitative agreement with experiments and numerics.
Resumo:
A semiclassical coupled-wave theory is developed for TE waves in one-dimensional periodic structures. The theory is used to calculate the bandwidths and reflection/transmission characteristics of such structures, as functions of the incident wave frequency. The results are in good agreement with exact numerical simulations for an arbitrary angle of incidence and for any achievable refractive index contrast on a period of the structure.
Resumo:
Gravitationally coupled scalar fields, originally introduced by Jordan, Brans and Dicke to account for a non-constant gravitational coupling, are a prediction of many non-Einsteinian theories of gravity not excluding perturbative formulations of string theory. In this paper, we compute the cross sections for scattering and absorption of scalar and tensor gravitational waves by a resonant-mass detector in the framework of the Jordan-Brans-Dicke theory. The results are then specialized to the case of a detector of spherical shape and shown to reproduce those obtained in general relativity in a certain limit. Eventually we discuss the potential detectability of scalar waves emitted in a spherically symmetric gravitational collapse.
Resumo:
We study the response and cross sections for the absorption of GW energy generated in a Jordan-Brans-Dicke theory by a resonant mass detector shaped as a hollow sphere. As a source of the GW we take a binary system in the Newtonian approximation. For masses of the stars of the order of the solar mass, the emitted GW sweeps a range of frequencies which include the first resonant mode of the detector.
Resumo:
region to the other. We also present a C-type solution that describes neutral bubbles in uniform acceleration, and we use it to construct an instanton that mediates the breaking of a cosmic string by forming bubbles at its ends. The rate for this process is also calculated. Finally, we argue that a similar solution can be constructed for magnetic bubbles, and that it can be used to describe a semiclassical instability of the two-timing vacuum against production of massless monopole pairs.
Resumo:
Coalescing compact binary systems are important sources of gravitational waves. Here we investigate the detectability of this gravitational radiation by the recently proposed laser interferometers. The spectral density of noise for various practicable configurations of the detector is also reviewed. This includes laser interferometers with delay lines and Fabry-Prot cavities in the arms, both in standard and dual recycling arrangements. The sensitivity of the detector in all those configurations is presented graphically and the signal-to-noise ratio is calculated numerically. For all configurations we find values of the detector's parameters which maximize the detectability of coalescing binaries, the discussion comprising Newtonian- as well as post-Newtonian-order effects. Contour plots of the signal-to-noise ratio are also presented in certain parameter domains which illustrate the interferometer's response to coalescing binary signals.
Resumo:
We propose a new method of operating laser interferometric gravitational-wave detectors when observing chirps of gravitational radiation from coalescing compact binary stars. This technique consists of the use of narrow-band dual recycling to increase the signal but with the tuning frequency of the detector arranged to follow the frequency of a chirp. We consider the response of such an instrument to chirps, including the effect of inevitable errors in tracking. Different possible tuning strategies are discussed. Both the final signal-to-noise ratio and timing accuracy are evaluated and are shown to be significantly improved by the use of dynamic tuning. This should allow an accurate and reliable measurement of Hubble's constant.