168 resultados para Infinite Horizon
Resumo:
La sèrie d'informes Horizon és el resultat més tangible del Projecte Horizon del New Media Consortium, un esforç de recerca qualitativa iniciat el 2002 que identifica i descriu les tecnologies emergents amb més potencial d'impacte en l'ensenyament, l'aprenentatge, la recerca i la expressió creativa en l'àmbit educatiu global. Aquest volum, l'Informe Horizon 2010: Edició Iberoamericana, se centra en la investigació en els països de la regió Iberoamericana (incloent-hi tota Llatinoamèrica, Espanya i Portugal) i en l'àmbit de l'educació superior. L'Informe Horizon 2010: Edició Iberoamericana és el primer que ofereix aquesta contextualització regional i ha estat produït per l'NMC i el eLearn Center de la Universitat Oberta de Catalunya.
Resumo:
Electrical property derivative expressions are presented for the nuclear relaxation contribution to static and dynamic (infinite frequency approximation) nonlinear optical properties. For CF4 and SF6, as opposed to HF and CH4, a term that is quadratic in the vibrational anharmonicity (and not previously evaluated for any molecule) makes an important contribution to the static second vibrational hyperpolarizability of CF4 and SF6. A comparison between calculated and experimental values for the difference between the (anisotropic) Kerr effect and electric field induced second-harmonic generation shows that, at the Hartree-Fock level, the nuclear relaxation/infinite frequency approximation gives the correct trend (in the series CH4, CF4, SF6) but is of the order of 50% too small
Resumo:
Classical planning has been notably successful in synthesizing finite plans to achieve states where propositional goals hold. In the last few years, classical planning has also been extended to incorporate temporally extended goals, expressed in temporal logics such as LTL, to impose restrictions on the state sequences generated by finite plans. In this work, we take the next step and consider the computation of infinite plans for achieving arbitrary LTL goals. We show that infinite plans can also be obtained efficiently by calling a classical planner once over a classical planning encoding that represents and extends the composition of the planningdomain and the B¨uchi automaton representingthe goal. This compilation scheme has been implemented and a number of experiments are reported.
Resumo:
This paper explores the relationships between noncooperative bargaining games and the consistent value for non-transferable utility (NTU) cooperative games. A dynamic approach to the consistent value for NTU games is introduced: the consistent vector field. The main contribution of the paper is to show that the consistent field is intimately related to the concept of subgame perfection for finite horizon noncooperative bargaining games, as the horizon goes to infinity and the cost of delay goes to zero. The solutions of the dynamic system associated to the consistent field characterize the subgame perfect equilibrium payoffs of the noncooperative bargaining games. We show that for transferable utility, hyperplane and pure bargaining games, the dynamics of the consistent fields converge globally to the unique consistent value. However, in the general NTU case, the dynamics of the consistent field can be complex. An example is constructed where the consistent field has cyclic solutions; moreover, the finite horizon subgame perfect equilibria do not approach the consistent value.
Resumo:
This paper derives the HJB (Hamilton-Jacobi-Bellman) equation for sophisticated agents in a finite horizon dynamic optimization problem with non-constant discounting in a continuous setting, by using a dynamic programming approach. A simple example is used in order to illustrate the applicability of this HJB equation, by suggesting a method for constructing the subgame perfect equilibrium solution to the problem.Conditions for the observational equivalence with an associated problem with constantdiscounting are analyzed. Special attention is paid to the case of free terminal time. Strotz¿s model (an eating cake problem of a nonrenewable resource with non-constant discounting) is revisited.
Resumo:
Given a Lagrangian system depending on the position derivatives of any order, and assuming that certain conditions are satisfied, a second-order differential system is obtained such that its solutions also satisfy the Euler equations derived from the original Lagrangian. A generalization of the singular Lagrangian formalism permits a reduction of order keeping the canonical formalism in sight. Finally, the general results obtained in the first part of the paper are applied to Wheeler-Feynman electrodynamics for two charged point particles up to order 1/c4.
Resumo:
We initiate a systematic scan of the landscape of black holes in any spacetime dimension using the recently proposed blackfold effective worldvolume theory. We focus primarily on asymptotically flat stationary vacuum solutions, where we uncover large classes of new black holes. These include helical black strings and black rings, black odd-spheres, for which the horizon is a product of a large and a small sphere, and non-uniform black cylinders. More exotic possibilities are also outlined. The blackfold description recovers correctly the ultraspinning Myers-Perry black holes as ellipsoidal even-ball configurations where the velocity field approaches the speed of light at the boundary of the ball. Helical black ring solutions provide the first instance of asymptotically flat black holes in more than four dimensions with a single spatial U(1) isometry. They also imply infinite rational non-uniqueness in ultraspinning regimes, where they maximize the entropy among all stationary single-horizon solutions. Moreover, static blackfolds are possible with the geometry of minimal surfaces. The absence of compact embedded minimal surfaces in Euclidean space is consistent with the uniqueness theorem of static black holes
Resumo:
This paper derives the HJB (Hamilton-Jacobi-Bellman) equation for sophisticated agents in a finite horizon dynamic optimization problem with non-constant discounting in a continuous setting, by using a dynamic programming approach. A simple example is used in order to illustrate the applicability of this HJB equation, by suggesting a method for constructing the subgame perfect equilibrium solution to the problem.Conditions for the observational equivalence with an associated problem with constantdiscounting are analyzed. Special attention is paid to the case of free terminal time. Strotz¿s model (an eating cake problem of a nonrenewable resource with non-constant discounting) is revisited.
Resumo:
We initiate a systematic scan of the landscape of black holes in any spacetime dimension using the recently proposed blackfold effective worldvolume theory. We focus primarily on asymptotically flat stationary vacuum solutions, where we uncover large classes of new black holes. These include helical black strings and black rings, black odd-spheres, for which the horizon is a product of a large and a small sphere, and non-uniform black cylinders. More exotic possibilities are also outlined. The blackfold description recovers correctly the ultraspinning Myers-Perry black holes as ellipsoidal even-ball configurations where the velocity field approaches the speed of light at the boundary of the ball. Helical black ring solutions provide the first instance of asymptotically flat black holes in more than four dimensions with a single spatial U(1) isometry. They also imply infinite rational non-uniqueness in ultraspinning regimes, where they maximize the entropy among all stationary single-horizon solutions. Moreover, static blackfolds are possible with the geometry of minimal surfaces. The absence of compact embedded minimal surfaces in Euclidean space is consistent with the uniqueness theorem of static black holes
Resumo:
La Institució CERCA organitza una sessió amb Ignasi Labastida, cap de l’Oficina de Difusió del Coneixement de la UB, per conèixer millor les implicacions que la política d’accés obert té sobre investigadors i centres de recerca.
Resumo:
Rotation distance quantifies the difference in shape between two rooted binary trees of the same size by counting the minimum number of elementary changes needed to transform one tree to the other. We describe several types of rotation distance, and provide upper bounds on distances between trees with a fixed number of nodes with respect to each type. These bounds are obtained by relating each restricted rotation distance to the word length of elements of Thompson's group F with respect to different generating sets, including both finite and infinite generating sets.
Resumo:
An algebraic decay rate is derived which bounds the time required for velocities to equilibrate in a spatially homogeneous flow-through model representing the continuum limit of a gas of particles interacting through slightly inelastic collisions. This rate is obtained by reformulating the dynamical problem as the gradient flow of a convex energy on an infinite-dimensional manifold. An abstract theory is developed for gradient flows in length spaces, which shows how degenerate convexity (or even non-convexity) | if uniformly controlled | will quantify contractivity (limit expansivity) of the flow.
Resumo:
We prove that the fundamental group of any Seifert 3-manifold is conjugacy separable. That is, conjugates may be distinguished infinite quotients or, equivalently, conjugacy classes are closed in the pro-finite topology.