42 resultados para Implicit finite difference approximation scheme


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrical property derivative expressions are presented for the nuclear relaxation contribution to static and dynamic (infinite frequency approximation) nonlinear optical properties. For CF4 and SF6, as opposed to HF and CH4, a term that is quadratic in the vibrational anharmonicity (and not previously evaluated for any molecule) makes an important contribution to the static second vibrational hyperpolarizability of CF4 and SF6. A comparison between calculated and experimental values for the difference between the (anisotropic) Kerr effect and electric field induced second-harmonic generation shows that, at the Hartree-Fock level, the nuclear relaxation/infinite frequency approximation gives the correct trend (in the series CH4, CF4, SF6) but is of the order of 50% too small

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The space and time discretization inherent to all FDTD schemesintroduce non-physical dispersion errors, i.e. deviations ofthe speed of sound from the theoretical value predicted bythe governing Euler differential equations. A generalmethodologyfor computing this dispersion error via straightforwardnumerical simulations of the FDTD schemes is presented.The method is shown to provide remarkable accuraciesof the order of 1/1000 in a wide variety of twodimensionalfinite difference schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A family of scaling corrections aimed to improve the chi-square approximation of goodness-of-fit test statistics in small samples, large models, and nonnormal data was proposed in Satorra and Bentler (1994). For structural equations models, Satorra-Bentler's (SB) scaling corrections are available in standard computer software. Often, however, the interest is not on the overall fit of a model, but on a test of the restrictions that a null model say ${\cal M}_0$ implies on a less restricted one ${\cal M}_1$. If $T_0$ and $T_1$ denote the goodness-of-fit test statistics associated to ${\cal M}_0$ and ${\cal M}_1$, respectively, then typically the difference $T_d = T_0 - T_1$ is used as a chi-square test statistic with degrees of freedom equal to the difference on the number of independent parameters estimated under the models ${\cal M}_0$ and ${\cal M}_1$. As in the case of the goodness-of-fit test, it is of interest to scale the statistic $T_d$ in order to improve its chi-square approximation in realistic, i.e., nonasymptotic and nonnormal, applications. In a recent paper, Satorra (1999) shows that the difference between two Satorra-Bentler scaled test statistics for overall model fit does not yield the correct SB scaled difference test statistic. Satorra developed an expression that permits scaling the difference test statistic, but his formula has some practical limitations, since it requires heavy computations that are notavailable in standard computer software. The purpose of the present paper is to provide an easy way to compute the scaled difference chi-square statistic from the scaled goodness-of-fit test statistics of models ${\cal M}_0$ and ${\cal M}_1$. A Monte Carlo study is provided to illustrate the performance of the competing statistics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple method is presented to evaluate the effects of short-range correlations on the momentum distribution of nucleons in nuclear matter within the framework of the Greens function approach. The method provides a very efficient representation of the single-particle Greens function for a correlated system. The reliability of this method is established by comparing its results to those obtained in more elaborate calculations. The sensitivity of the momentum distribution on the nucleon-nucleon interaction and the nuclear density is studied. The momentum distributions of nucleons in finite nuclei are derived from those in nuclear matter using a local-density approximation. These results are compared to those obtained directly for light nuclei like 16O.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose a generalization of the density functional theory. The theory leads to single-particle equations of motion with a quasilocal mean-field operator, which contains a quasiparticle position-dependent effective mass and a spin-orbit potential. The energy density functional is constructed using the extended Thomas-Fermi approximation and the ground-state properties of doubly magic nuclei are considered within the framework of this approach. Calculations were performed using the finite-range Gogny D1S forces and the results are compared with the exact Hartree-Fock calculations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nucleon spectral function in nuclear matter fulfills an energy weighted sum rule. Comparing two different realistic potentials, these sum rules are studied for Greens functions that are derived self-consistently within the T matrix approximation at finite temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bulk and single-particle properties of hot hyperonic matter are studied within the Brueckner-Hartree-Fock approximation extended to finite temperature. The bare interaction in the nucleon sector is the Argonne V18 potential supplemented with an effective three-body force to reproduce the saturating properties of nuclear matter. The modern Nijmegen NSC97e potential is employed for the hyperon-nucleon and hyperon-hyperon interactions. The effect of temperature on the in-medium effective interaction is found to be, in general, very small and the single-particle potentials differ by at most 25% for temperatures in the range from 0 to 60 MeV. The bulk properties of infinite matter of baryons, either nuclear isospin symmetric or a Beta-stable composition that includes a nonzero fraction of hyperons, are obtained. It is found that the presence of hyperons can modify the thermodynamical properties of the system in a non-negligible way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a numerical method for generating vortex rings in Bose-Einstein condensates confined in axially symmetric traps. The vortex ring is generated using the line-source approximation for the vorticity, i.e., the curl of the superfluid velocity field is different from zero only on a circumference of a given radius located on a plane perpendicular to the symmetry axis and coaxial with it. The particle density is obtained by solving a modified Gross-Pitaevskii equation that incorporates the effect of the velocity field. We discuss the appearance of density profiles, the vortex core structure, and the vortex nucleation energy, i.e., the energy difference between vortical and ground-state configurations. This is used to present a qualitative description of the vortex dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop a systematic method to derive all orders of mode couplings in a weakly nonlinear approach to the dynamics of the interface between two immiscible viscous fluids in a Hele-Shaw cell. The method is completely general: it applies to arbitrary geometry and driving. Here we apply it to the channel geometry driven by gravity and pressure. The finite radius of convergence of the mode-coupling expansion is found. Calculation up to third-order couplings is done, which is necessary to account for the time-dependent Saffman-Taylor finger solution and the case of zero viscosity contrast. The explicit results provide relevant analytical information about the role that the viscosity contrast and the surface tension play in the dynamics of the system. We finally check the quantitative validity of different orders of approximation and a resummation scheme against a physically relevant, exact time-dependent solution. The agreement between the low-order approximations and the exact solution is excellent within the radius of convergence, and is even reasonably good beyond this radius.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ancient temple dedicated to the Roman Emperor Augustus on the hilltop of Tarraco (today’s Tarragona), was the main element of the sacred precinct of the Imperial cult. It was a two hectare square, bordered by a portico with an attic decorated with a sequence of clypeus (i.e. monumental shields) made with marble plates from the Luni-Carrara’s quarries. This contribution presents the results of the analysis of a three-dimensional photogrammetric survey of one of these clipeus, partially restored and exhibited at the National Archaeological Museum of Tarragona. The perimeter ring was bounded by a sequence of meanders inscribed in a polygon of 11 sides, a hendecagon. Moreover, a closer geometric analysis suggests that the relationship between the outer meander rim and the oval pearl ring that delimited the divinity of Jupiter Ammon can be accurately determined by the diagonals of an octagon inscribed in the perimeter of the clypeus. This double evidence suggests a combined layout, in the same design, of an octagon and a hendecagon. Hypothetically, this could be achieved by combining the octagon with the approximation to Pi used in antiquity: 22/7 of the circle’s diameter. This method allows the drawing of a hendecagon with a clearly higher precision than with other ancient methods. Even the modelling of the motifs that separate the different decorative stripes corroborates the geometric scheme that we propose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotation distance quantifies the difference in shape between two rooted binary trees of the same size by counting the minimum number of elementary changes needed to transform one tree to the other. We describe several types of rotation distance, and provide upper bounds on distances between trees with a fixed number of nodes with respect to each type. These bounds are obtained by relating each restricted rotation distance to the word length of elements of Thompson's group F with respect to different generating sets, including both finite and infinite generating sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We construct estimates of educational attainment for a sample of OECD countries using previously unexploited sources. We follow a heuristic approach to obtain plausible time profiles for attainment levels by removing sharp breaks in the data that seem to reflect changes in classification criteria. We then construct indicators of the information content of our series and a number of previously available data sets and examine their performance in several growth specifications. We find a clear positive correlation between data quality and the size and significance of human capital coefficients in growth regressions. Using an extension of the classical errors in variables model, we construct a set of meta-estimates of the coefficient of years of schooling in an aggregate Cobb-Douglas production function. Our results suggest that, after correcting for measurement error bias, the value of this parameter is well above 0.50.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give a 5-approximation algorithm to the rooted Subtree-Prune-and-Regraft (rSPR) distance between two phylogenies, which was recently shown to be NP-complete by Bordewich and Semple [5]. This paper presents the first approximation result for this important tree distance. The algorithm follows a standard format for tree distances such as Rodrigues et al. [24] and Hein et al. [13]. The novel ideas are in the analysis. In the analysis, the cost of the algorithm uses a \cascading" scheme that accounts for possible wrong moves. This accounting is missing from previous analysis of tree distance approximation algorithms. Further, we show how all algorithms of this type can be implemented in linear time and give experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explore which types of finiteness properties are possible for intersections of geometrically finite groups of isometries in negatively curved symmetric rank one spaces. Our main tool is a twist construction which takes as input a geometrically finite group containing a normal subgroup of infinite index with given finiteness properties and infinite Abelian quotient, and produces a pair of geometrically finite groups whose intersection is isomorphic to the normal subgroup.