50 resultados para INDEPENDENT COMPONENT ANALYSIS
Resumo:
En aquest treball, es proposa un nou mètode per estimar en temps real la qualitat del producte final en processos per lot. Aquest mètode permet reduir el temps necessari per obtenir els resultats de qualitat de les anàlisi de laboratori. S'utiliza un model de anàlisi de componentes principals (PCA) construït amb dades històriques en condicions normals de funcionament per discernir si un lot finalizat és normal o no. Es calcula una signatura de falla pels lots anormals i es passa a través d'un model de classificació per la seva estimació. L'estudi proposa un mètode per utilitzar la informació de les gràfiques de contribució basat en les signatures de falla, on els indicadors representen el comportament de les variables al llarg del procés en les diferentes etapes. Un conjunt de dades compost per la signatura de falla dels lots anormals històrics es construeix per cercar els patrons i entrenar els models de classifcació per estimar els resultas dels lots futurs. La metodologia proposada s'ha aplicat a un reactor seqüencial per lots (SBR). Diversos algoritmes de classificació es proven per demostrar les possibilitats de la metodologia proposada.
Resumo:
First discussion on compositional data analysis is attributable to Karl Pearson, in 1897. However, notwithstanding the recent developments on algebraic structure of the simplex, more than twenty years after Aitchison’s idea of log-transformations of closed data, scientific literature is again full of statistical treatments of this type of data by using traditional methodologies. This is particularly true in environmental geochemistry where besides the problem of the closure, the spatial structure (dependence) of the data have to be considered. In this work we propose the use of log-contrast values, obtained by asimplicial principal component analysis, as LQGLFDWRUV of given environmental conditions. The investigation of the log-constrast frequency distributions allows pointing out the statistical laws able togenerate the values and to govern their variability. The changes, if compared, for example, with the mean values of the random variables assumed as models, or other reference parameters, allow definingmonitors to be used to assess the extent of possible environmental contamination. Case study on running and ground waters from Chiavenna Valley (Northern Italy) by using Na+, K+, Ca2+, Mg2+, HCO3-, SO4 2- and Cl- concentrations will be illustrated
Resumo:
The information provided by the alignment-independent GRid Independent Descriptors (GRIND) can be condensed by the application of principal component analysis, obtaining a small number of principal properties (GRIND-PP), which is more suitable for describing molecular similarity. The objective of the present study is to optimize diverse parameters involved in the obtention of the GRIND-PP and validate their suitability for applications, requiring a biologically relevant description of the molecular similarity. With this aim, GRIND-PP computed with a collection of diverse settings were used to carry out ligand-based virtual screening (LBVS) on standard conditions. The quality of the results obtained was remarkable and comparable with other LBVS methods, and their detailed statistical analysis allowed to identify the method settings more determinant for the quality of the results and their optimum. Remarkably, some of these optimum settings differ significantly from those used in previously published applications, revealing their unexplored potential. Their applicability in large compound database was also explored by comparing the equivalence of the results obtained using either computed or projected principal properties. In general, the results of the study confirm the suitability of the GRIND-PP for practical applications and provide useful hints about how they should be computed for obtaining optimum results.
Resumo:
Background: Peach fruit undergoes a rapid softening process that involves a number of metabolic changes. Storing fruit at low temperatures has been widely used to extend its postharvest life. However, this leads to undesired changes, such as mealiness and browning, which affect the quality of the fruit. In this study, a 2-D DIGE approach was designed to screen for differentially accumulated proteins in peach fruit during normal softening as well as under conditions that led to fruit chilling injury. Results:The analysis allowed us to identify 43 spots -representing about 18% of the total number analyzed- that show statistically significant changes. Thirty-nine of the proteins could be identified by mass spectrometry. Some of the proteins that changed during postharvest had been related to peach fruit ripening and cold stress in the past. However, we identified other proteins that had not been linked to these processes. A graphical display of the relationship between the differentially accumulated proteins was obtained using pairwise average-linkage cluster analysis and principal component analysis. Proteins such as endopolygalacturonase, catalase, NADP-dependent isocitrate dehydrogenase, pectin methylesterase and dehydrins were found to be very important for distinguishing between healthy and chill injured fruit. A categorization of the differentially accumulated proteins was performed using Gene Ontology annotation. The results showed that the 'response to stress', 'cellular homeostasis', 'metabolism of carbohydrates' and 'amino acid metabolism' biological processes were affected the most during the postharvest. Conclusions: Using a comparative proteomic approach with 2-D DIGE allowed us to identify proteins that showed stage-specific changes in their accumulation pattern. Several proteins that are related to response to stress, cellular homeostasis, cellular component organization and carbohydrate metabolism were detected as being differentially accumulated. Finally, a significant proportion of the proteins identified had not been associated with softening, cold storage or chilling injury-altered fruit before; thus, comparative proteomics has proven to be a valuable tool for understanding fruit softening and postharvest.
Resumo:
We consider two fundamental properties in the analysis of two-way tables of positive data: the principle of distributional equivalence, one of the cornerstones of correspondence analysis of contingency tables, and the principle of subcompositional coherence, which forms the basis of compositional data analysis. For an analysis to be subcompositionally coherent, it suffices to analyse the ratios of the data values. The usual approach to dimension reduction in compositional data analysis is to perform principal component analysis on the logarithms of ratios, but this method does not obey the principle of distributional equivalence. We show that by introducing weights for the rows and columns, the method achieves this desirable property. This weighted log-ratio analysis is theoretically equivalent to spectral mapping , a multivariate method developed almost 30 years ago for displaying ratio-scale data from biological activity spectra. The close relationship between spectral mapping and correspondence analysis is also explained, as well as their connection with association modelling. The weighted log-ratio methodology is applied here to frequency data in linguistics and to chemical compositional data in archaeology.
Resumo:
We consider the joint visualization of two matrices which have common rowsand columns, for example multivariate data observed at two time pointsor split accord-ing to a dichotomous variable. Methods of interest includeprincipal components analysis for interval-scaled data, or correspondenceanalysis for frequency data or ratio-scaled variables on commensuratescales. A simple result in matrix algebra shows that by setting up thematrices in a particular block format, matrix sum and difference componentscan be visualized. The case when we have more than two matrices is alsodiscussed and the methodology is applied to data from the InternationalSocial Survey Program.
Resumo:
Dual scaling of a subjects-by-objects table of dominance data (preferences,paired comparisons and successive categories data) has been contrasted with correspondence analysis, as if the two techniques were somehow different. In this note we show that dual scaling of dominance data is equivalent to the correspondence analysis of a table which is doubled with respect to subjects. We also show that the results of both methods can be recovered from a principal components analysis of the undoubled dominance table which is centred with respect to subject means.
Resumo:
Projecte de recerca elaborat a partir d’una estada a la Universidad Politécnica de Madrid, Espanya, entre setembre i o desembre del 2007. Actualment la indústria aeroespacial i aeronàutica té com prioritat millorar la fiabilitat de las seves estructures a través del desenvolupament de nous sistemes per a la monitorització i detecció d’impactes. Hi ha diverses tècniques potencialment útils, i la seva aplicabilitat en una situació particular depèn críticament de la mida del defecte que permet l’estructura. Qualsevol defecte canviarà la resposta vibratòria de l’element estructural, així com el transitori de l’ona que es propaga per l’estructura elàstica. Correlacionar aquests canvis, que poden ser detectats experimentalment amb l’ocurrència del defecte, la seva localització i quantificació, és un problema molt complex. Aquest treball explora l’ús de l'Anàlisis de Components Principals (Principal Component Analysis - PCA-) basat en la formulació dels estadístics T2 i Q per tal de detectar i distingir els defectes a l'estructura, tot correlacionant els seus canvis a la resposta vibratòria. L’estructura utilitzada per l’estudi és l’ala d’una turbina d’un avió comercial. Aquesta ala s’excita en un extrem utilitzant un vibrador, i a la qual s'han adherit set sensors PZT a la superfície. S'aplica un senyal conegut i s'analitzen les respostes. Es construeix un model PCA utilitzant dades de l’estructura sense defecte. Per tal de provar el model, s'adhereix un tros d’alumini en quatre posicions diferents. Les dades dels assajos de l'estructura amb defecte es projecten sobre el model. Les components principals i les distàncies de Q-residual i T2-Hotelling s'utilitzaran per a l'anàlisi de les incidències. Q-residual indica com de bé s'adiu cadascuna de les mostres al model PCA, ja que és una mesura de la diferència, o residu, entre la mostra i la seva projecció sobre les components principals retingudes en el model. La distància T2-Hotelling és una mesura de la variació de cada mostra dins del model PCA, o el que vindria a ser el mateix, la distància al centre del model PCA.
Resumo:
This study examines how structural determinants influence intermediary factors of child health inequities and how they operate through the communities where children live. In particular, we explore individual, family and community level characteristics associated with a composite indicator that quantitatively measures intermediary determinants of early childhood health in Colombia. We use data from the 2010 Colombian Demographic and Health Survey (DHS). Adopting the conceptual framework of the Commission on Social Determinants of Health (CSDH), three dimensions related to child health are represented in the index: behavioural factors, psychosocial factors and health system. In order to generate the weight of the variables and take into account the discrete nature of the data, principal component analysis (PCA) using polychoric correlations are employed in the index construction. Weighted multilevel models are used to examine community effects. The results show that the effect of household’s SES is attenuated when community characteristics are included, indicating the importance that the level of community development may have in mediating individual and family characteristics. The findings indicate that there is a significant variance in intermediary determinants of child health between-community, especially for those determinants linked to the health system, even after controlling for individual, family and community characteristics. These results likely reflect that whilst the community context can exert a greater influence on intermediary factors linked directly to health, in the case of psychosocial factors and the parent’s behaviours, the family context can be more important. This underlines the importance of distinguishing between community and family intervention programmes.
Resumo:
Three multivariate statistical tools (principal component analysis, factor analysis, analysis discriminant) have been tested to characterize and model the sags registered in distribution substations. Those models use several features to represent the magnitude, duration and unbalanced grade of sags. They have been obtained from voltage and current waveforms. The techniques are tested and compared using 69 registers of sags. The advantages and drawbacks of each technique are listed
Resumo:
A statistical method for classification of sags their origin downstream or upstream from the recording point is proposed in this work. The goal is to obtain a statistical model using the sag waveforms useful to characterise one type of sags and to discriminate them from the other type. This model is built on the basis of multi-way principal component analysis an later used to project the available registers in a new space with lower dimension. Thus, a case base of diagnosed sags is built in the projection space. Finally classification is done by comparing new sags against the existing in the case base. Similarity is defined in the projection space using a combination of distances to recover the nearest neighbours to the new sag. Finally the method assigns the origin of the new sag according to the origin of their neighbours
Resumo:
The work presented in this paper belongs to the power quality knowledge area and deals with the voltage sags in power transmission and distribution systems. Propagating throughout the power network, voltage sags can cause plenty of problems for domestic and industrial loads that can financially cost a lot. To impose penalties to responsible party and to improve monitoring and mitigation strategies, sags must be located in the power network. With such a worthwhile objective, this paper comes up with a new method for associating a sag waveform with its origin in transmission and distribution networks. It solves this problem through developing hybrid methods which hire multiway principal component analysis (MPCA) as a dimension reduction tool. MPCA reexpresses sag waveforms in a new subspace just in a few scores. We train some well-known classifiers with these scores and exploit them for classification of future sags. The capabilities of the proposed method for dimension reduction and classification are examined using the real data gathered from three substations in Catalonia, Spain. The obtained classification rates certify the goodness and powerfulness of the developed hybrid methods as brand-new tools for sag classification
Resumo:
A comparision of the local effects of the basis set superposition error (BSSE) on the electron densities and energy components of three representative H-bonded complexes was carried out. The electron densities were obtained with Hartee-Fock and density functional theory versions of the chemical Hamiltonian approach (CHA) methodology. It was shown that the effects of the BSSE were common for all complexes studied. The electron density difference maps and the chemical energy component analysis (CECA) analysis confirmed that the local effects of the BSSE were different when diffuse functions were present in the calculations
Resumo:
Rho GTPases are conformational switches that control a wide variety of signaling pathways critical for eukaryotic cell development and proliferation. They represent attractive targets for drug design as their aberrant function and deregulated activity is associated with many human diseases including cancer. Extensive high-resolution structures (.100) and recent mutagenesis studies have laid the foundation for the design of new structure-based chemotherapeutic strategies. Although the inhibition of Rho signaling with drug-like compounds is an active area of current research, very little attention has been devoted to directly inhibiting Rho by targeting potential allosteric non-nucleotide binding sites. By avoiding the nucleotide binding site, compounds may minimize the potential for undesirable off-target interactions with other ubiquitous GTP and ATP binding proteins. Here we describe the application of molecular dynamics simulations, principal component analysis, sequence conservation analysis, and ensemble small-molecule fragment mapping to provide an extensive mapping of potential small-molecule binding pockets on Rho family members. Characterized sites include novel pockets in the vicinity of the conformationaly responsive switch regions as well as distal sites that appear to be related to the conformations of the nucleotide binding region. Furthermore the use of accelerated molecular dynamics simulation, an advanced sampling method that extends the accessible time-scale of conventional simulations, is found to enhance the characterization of novel binding sites when conformational changes are important for the protein mechanism.
Resumo:
Els avenços en tècniques de genotipat de polimorfismes genètics a gran escala estan liderant una revolució en el camp de l’epidemiologia genètica i la genètica de poblacions humanes. La informació aportada per aquestes tècniques ha evidenciat l’existència d’estructuracions poblacionals que poden augmentar l’error en els estudis d’associació a escala genòmica (GWAS, genome-wide association studies). Estudis recents han demostrat la presència d’aquestes estructuracions a nivell interregional i intrarregional a Europa. El present projecte ha avaluat el grau d’estructuració genètica en poblacions de la Península Ibèrica i altres regions del sudoest europeu (Itàlia i França) per quantificar l’impacte que aquesta potencial estructuració pot tenir en el disseny d’estudis d’associació GWAS i reconstruir la història demogràfica de les poblacions de la Mediterrània. Per aconseguir aquests objectius, s’han analitzat mostres de DNA de 770 individus de 26 poblacions de la Península Ibèrica, França, Itàlia i d’altres països de la Mediterrània. Aquestes mostres van ser genotipades per 240000 SNPs utilitzant l’array 250K StyI d’Affymetrix en el marc d’aquest projecte o mitjançant altres arrays d’Affymetrix en els projectes internacionals HapMap i POPRES. S’han realitzat anàlisis estadístiques incloent anàlisis de components principals, Fst, identitat per descendència, desequilibri de lligament, barreres genètiques, etc. Aquests resultats han permés construir un marc de referència de la variabilitat en aquesta regió, avaluar el seu impacte en estudis d’associació i proposar mesures per evitar l’increment de qualsevol tipus d’error (tipus I i II) en estudis nacionals i internacionals. A més, també han permés reconstruir la història de les poblacions humanes de la Mediterrània així com analitzar les seves relacions demogràfiques. Donada la duració limitada d’aquesta acció (24 mesos, d’octubre de 2010 a setembre de 2012), els resultats d’aquest projecte es troben actualment en fase de redacció i conduiran a diverses publicacions en revistes internacionals i a la preparació de comunicacions a congressos.