26 resultados para IN-MEDIUM KAON
Resumo:
En ensayos realizados en plantaciones de manzanos en 1994 en Hood River, Oregon, se evaluó el porcentaje de daño obtenido cuando se trataron la primera y segunda generación de Cydia pomonella L con tebufenocida (RH 5992). variando tan sólo la fecha del primer tratamiento para la primera generación. Se evaluaron la persistencia, porcentaje de recubrimiento e influencia en la efectividad de tebufenocida dependiendo del volumen de caldo aplicado por hectárea y del coadyuvante utilizado. No se obtuvieron diferencias significativas entre los distintos momentos de aplicación de tebufenocida, ni tampoco entre el tipo de coadyuvante utilizado, pero sí se obtuvieron entre volúmenes. En árboles de tamaño medio, el porcentaje de mortalidad larvaria fue del 60,89r cuando se aplicó tebufenocida a un volumen de 935 1/ha. y del 81,1% cuando se aplicó a un volumen de 3.745 1/ha, porcentaje que no decreció hasta 32 días después del tratamiento. Se obtuvo una buena correlación entre porcentaje de cobertura y porcentaje de mortalidad cuando se trató con 935 1/ha.
Resumo:
The production of φ mesons in proton collisions with C, Cu, Ag, and Au targets has been studied via the φ → K + K − decay at an incident beam energy of 2.83 GeV using the ANKE detector system at COSY. For the first time, the momentum dependence of the nuclear transparency ratio, the in-medium φ width, and the differential cross section for φ -meson production at forward angles have been determined for these targets over the momentum range of 0.6-1.6 GeV /c. There are indications of a significant momentum dependence in the value of the extracted φ width, which corresponds to an effective φN absorption cross section in the range of 14-21 mb.
Resumo:
Striatal adenosine A2A receptors (A2ARs) are highly expressed in medium spiny neurons (MSNs) of the indirect efferent pathway, where they heteromerize with dopamine D2 receptors (D2Rs). A2ARs are also localized presynaptically in cortico-striatal glutamatergic terminals contacting MSNs of the direct efferent pathway, where they heteromerize with adenosine A1 receptors (A1Rs). It has been hypothesized that postsynaptic A2AR antagonists should be useful in Parkinson's disease, while presynaptic A2AR antagonists could be beneficial in dyskinetic disorders, such as Huntington's disease, obsessive-compulsive disorders and drug addiction. The aim or this work was to determine whether selective A2AR antagonists may be subdivided according to a preferential pre- versus postsynaptic mechanism of action. The potency at blocking the motor output and striatal glutamate release induced by cortical electrical stimulation and the potency at inducing locomotor activation were used as in vivo measures of pre- and postsynaptic activities, respectively. SCH-442416 and KW-6002 showed a significant preferential pre- and postsynaptic profile, respectively, while the other tested compounds (MSX-2, SCH-420814, ZM-241385 and SCH-58261) showed no clear preference. Radioligand-binding experiments were performed in cells expressing A2AR-D2R and A1R-A2AR heteromers to determine possible differences in the affinity of these compounds for different A2AR heteromers. Heteromerization played a key role in the presynaptic profile of SCH-442416, since it bound with much less affinity to A2AR when co-expressed with D2R than with A1R. KW-6002 showed the best relative affinity for A2AR co-expressed with D2R than co-expressed with A1R, which can at least partially explain the postsynaptic profile of this compound. Also, the in vitro pharmacological profile of MSX-2, SCH-420814, ZM-241385 and SCH-58261 was is in accordance with their mixed pre- and postsynaptic profile. On the basis of their preferential pre- versus postsynaptic actions, SCH-442416 and KW-6002 may be used as lead compounds to obtain more effective antidyskinetic and antiparkinsonian compounds, respectively.
Resumo:
The effect of quenched disorder on the propagation of autowaves in excitable media is studied both experimentally and numerically in relation to the light-sensitive Belousov-Zhabotinsky reaction. The spatial disorder is introduced through a random distribution with two different levels of transmittance. In one dimension the (time-averaged) wave speed is smaller than the corresponding to a homogeneous medium with the mean excitability. Contrarily, in two dimensions the velocity increases due to the roughening of the front. Results are interpreted using kinematic and scaling arguments. In particular, for d = 2 we verify a theoretical prediction of a power-law dependence for the relative change of the propagation speed on the disorder amplitude.
Resumo:
A microscopic calculation of the residual particle-hole (p-h) interaction in spin-polarized 3He is performed. As a starting point the Brueckner G matrix is used which is supplemented by including the phonon exchange terms self-consistently. An important ingredient in this microscopic version of the induced interaction is the treatment of the full momentum dependence of the interaction. This allows a consistent description of the Landau limit (Pauli-principle sum rule for the Landau parameters is fulfilled) but also enables a detailed study of the p-h interaction at finite momentum transfers. A comparison with correlated basis functions results shows good agreement for momentum transfers larger than the Fermi momentum.
Resumo:
We have analyzed the interplay between noise and periodic modulations in a mean field model of a neural excitable medium. For this purpose, we have considered two types of modulations, namely, variations of the resistance and oscillations of the threshold. In both cases, stochastic resonance is present, irrespective of whether the system is monostable or bistable.
Resumo:
Photon migration in a turbid medium has been modeled in many different ways. The motivation for such modeling is based on technology that can be used to probe potentially diagnostic optical properties of biological tissue. Surprisingly, one of the more effective models is also one of the simplest. It is based on statistical properties of a nearest-neighbor lattice random walk. Here we develop a theory allowing one to calculate the number of visits by a photon to a given depth, if it is eventually detected at an absorbing surface. This mimics cw measurements made on biological tissue and is directed towards characterizing the depth reached by photons injected at the surface. Our development of the theory uses formalism based on the theory of a continuous-time random walk (CTRW). Formally exact results are given in the Fourier-Laplace domain, which, in turn, are used to generate approximations for parameters of physical interest.
Resumo:
The effect of quenched disorder on the propagation of autowaves in excitable media is studied both experimentally and numerically in relation to the light-sensitive Belousov-Zhabotinsky reaction. The spatial disorder is introduced through a random distribution with two different levels of transmittance. In one dimension the (time-averaged) wave speed is smaller than the corresponding to a homogeneous medium with the mean excitability. Contrarily, in two dimensions the velocity increases due to the roughening of the front. Results are interpreted using kinematic and scaling arguments. In particular, for d = 2 we verify a theoretical prediction of a power-law dependence for the relative change of the propagation speed on the disorder amplitude.
Resumo:
In multifragmentation of hot nuclear matter, properties of fragments embedded in a soup of nucleonic gas and other fragments should be modified as compared with isolated nuclei. Such modifications are studied within a simple model where only nucleons and one kind of heavy nuclei are considered. The interaction between different species is described with a momentum-dependent two-body potential whose parameters are fitted to reproduce properties of cold isolated nuclei. The internal energy of heavy fragments is parametrized according to a liquid-drop model with density- and temperature-dependent parameters. Calculations are carried out for several subnuclear densities and moderate temperatures, for isospin-symmetric and asymmetric systems. We find that the fragments get stretched due to interactions with the medium and their binding energies decrease with increasing temperature and density of nuclear matter.
Resumo:
Internationalisation of HE and emergence of English as a global academic lingua franca used by people who share neither a common native tongue nor cultural and educational background have not only offered more opportunities but also raised challenges. According to recent European surveys, the percentage of pupils attaining the level of independent user in English varies from 14% to 82%, which evidences the potential and the complexity for English as a medium of instruction at tertiary level. This study aims to present the model of foreign language instruction at Vytautas Magnus University where one third of 30 languages are taught through English. It investigates the attitudes and practices of teachers in delivering their English-medium language courses by discussing the questions whether teaching other languages through English is psychologically, culturally and educationally preferable for teachers and students, whether it can limit the content taught and require a special methodology, how the teaching process changes with multiple languages used in the classroom and what level of English is necessary for teachers and students to ensure high quality of English-medium language teaching. The study is based on qualitative methodology with 12 language teachers participating as respondents. The results reveal areas in need of improvement.