18 resultados para Hydrogen sulphide


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The counteranion exchange of quaternary 1,2,3-triazolium salts was examined using a simple method that permitted halide ions to be swap for a variety of anions using an anion exchange resin (A¯ form). The method was applied to 1,2,3-triazolium-based ionic liquids and the iodideto- anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide impurities. Additionally, an anion exchange resin (N3¯ form) was used to obtain the benzyl azide from benzyl halide under mild reaction. Likewise, following a similar protocol, bis(azidomethyl)arenes were also synthesized in excellent yields. The results of a proton NMR spectroscopic study of simple azolium-based ion pairs are discussed, with attention focused on the significance of the charged-assisted (CH)+···anion hydrogen bonds of simple azolium systems such as 1-butyl-3-methylimidazolium and 1-benzyl-3-methyl-1,2,3-triazolium salts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The counteranion exchange of quaternary 1,2,3-triazolium salts was examined using a simple method that permitted halide ions to be swap for a variety of anions using an anion exchange resin (A¯ form). The method was applied to 1,2,3-triazolium-based ionic liquids and the iodideto- anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide impurities. Additionally, an anion exchange resin (N3¯ form) was used to obtain the benzyl azide from benzyl halide under mild reaction. Likewise, following a similar protocol, bis(azidomethyl)arenes were also synthesized in excellent yields. The results of a proton NMR spectroscopic study of simple azolium-based ion pairs are discussed, with attention focused on the significance of the charged-assisted (CH)+···anion hydrogen bonds of simple azolium systems such as 1-butyl-3-methylimidazolium and 1-benzyl-3-methyl-1,2,3-triazolium salts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of hydrogen desorption from amorphous silicon (ɑ-Si) nanoparticles grown by plasmaenhanced chemical vapor deposition (PECVD) has been analyzed by differential scanning calorimetry (DSC), mass spectrometry, and infrared spectroscopy, with the aim of quantifying the energy exchanged. Two exothermic peaks centered at 330 and 410 °C have been detected with energies per H atom of about 50 meV. This value has been compared with the results of theoretical calculations and is found to agree with the dissociation energy of Si-H groups of about 3.25 eV per H atom, provided that the formation energy per dangling bond in ɑ-Si is about 1.15 eV. It is shown that this result is valid for ɑ-Si:H films, too