32 resultados para High-throughput
Resumo:
Background Plant hormones play a pivotal role in several physiological processes during a plant's life cycle, from germination to senescence, and the determination of endogenous concentrations of hormones is essential to elucidate the role of a particular hormone in any physiological process. Availability of a sensitive and rapid method to quantify multiple classes of hormones simultaneously will greatly facilitate the investigation of signaling networks in controlling specific developmental pathways and physiological responses. Due to the presence of hormones at very low concentrations in plant tissues (10-9 M to 10-6 M) and their different chemistries, the development of a high-throughput and comprehensive method for the determination of hormones is challenging. Results The present work reports a rapid, specific and sensitive method using ultrahigh-performance liquid chromatography coupled to electrospray ionization tandem spectrometry (UPLC/ESI-MS/MS) to analyze quantitatively the major hormones found in plant tissues within six minutes, including auxins, cytokinins, gibberellins, abscisic acid, 1-amino-cyclopropane-1-carboxyic acid (the ethylene precursor), jasmonic acid and salicylic acid. Sample preparation, extraction procedures and UPLC-MS/MS conditions were optimized for the determination of all plant hormones and are summarized in a schematic extraction diagram for the analysis of small amounts of plant material without time-consuming additional steps such as purification, sample drying or re-suspension. Conclusions This new method is applicable to the analysis of dynamic changes in endogenous concentrations of hormones to study plant developmental processes or plant responses to biotic and abiotic stresses in complex tissues. An example is shown in which a hormone profiling is obtained from leaves of plants exposed to salt stress in the aromatic plant, Rosmarinus officinalis.
Resumo:
High-throughput prioritization of cancer-causing mutations (drivers) is a key challenge of cancer genome projects, due to the number of somatic variants detected in tumors. One important step in this task is to assess the functional impact of tumor somatic mutations. A number of computational methods have been employed for that purpose, although most were originally developed to distinguish disease-related nonsynonymous single nucleotide variants (nsSNVs) from polymorphisms. Our new method, transformed Functional Impact score for Cancer (transFIC), improves the assessment of the functional impact of tumor nsSNVs by taking into account the baseline tolerance of genes to functional variants.
Resumo:
BACKGROUND: The need for an integrated view of data obtained from high-throughput technologies gave rise to network analyses. These are especially useful to rationalize how external perturbations propagate through the expression of genes. To address this issue in the case of drug resistance, we constructed biological association networks of genes differentially expressed in cell lines resistant to methotrexate (MTX). METHODS: Seven cell lines representative of different types of cancer, including colon cancer (HT29 and Caco2), breast cancer (MCF-7 and MDA-MB-468), pancreatic cancer (MIA PaCa-2), erythroblastic leukemia (K562) and osteosarcoma (Saos-2), were used. The differential expression pattern between sensitive and MTX-resistant cells was determined by whole human genome microarrays and analyzed with the GeneSpring GX software package. Genes deregulated in common between the different cancer cell lines served to generate biological association networks using the Pathway Architect software. RESULTS: Dikkopf homolog-1 (DKK1) is a highly interconnected node in the network generated with genes in common between the two colon cancer cell lines, and functional validations of this target using small interfering RNAs (siRNAs) showed a chemosensitization toward MTX. Members of the UDP-glucuronosyltransferase 1A (UGT1A) family formed a network of genes differentially expressed in the two breast cancer cell lines. siRNA treatment against UGT1A also showed an increase in MTX sensitivity. Eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) was overexpressed among the pancreatic cancer, leukemia and osteosarcoma cell lines, and siRNA treatment against EEF1A1 produced a chemosensitization toward MTX. CONCLUSIONS: Biological association networks identified DKK1, UGT1As and EEF1A1 as important gene nodes in MTX-resistance. Treatments using siRNA technology against these three genes showed chemosensitization toward MTX.
Resumo:
Notwithstanding the functional role that the aggregates of some amyloidogenic proteins can play in different organisms, protein aggregation plays a pivotal role in the pathogenesis of a large number of human diseases. One of such diseases is Alzheimer"s disease (AD), where the overproduction and aggregation of the β-amyloid peptide (Aβ) are regarded as early critical factors. Another protein that seems to occupy a prominent position within the complex pathological network of AD is the enzyme acetylcholinesterase (AChE), with classical and non-classical activities involved at the late (cholinergic deficit) and early (Aβ aggregation) phases of the disease. Dual inhibitors of Aβ aggregation and AChE are thus emerging as promising multi-target agents with potential to efficiently modify the natural course of AD. In the initial phases of the drug discovery process of such compounds, in vitro evaluation of the inhibition of Aβ aggregation is rather troublesome, as it is very sensitive to experimental assay conditions, and requires expensive synthetic Aβ peptides, which makes cost-prohibitive the screening of large compound libraries. Herein, we review recently developed multi-target anti-Alzheimer compounds that exhibit both Aβ aggregation and AChE inhibitory activities, and, in some cases also additional valuable activities such as BACE-1 inhibition or antioxidant properties. We also discuss the development of simplified in vivo methods for the rapid, simple, reliable, unexpensive, and high-throughput amenable screening of Aβ aggregation inhibitors that rely on the overexpression of Aβ42 alone or fused with reporter proteins in Escherichia coli.
Resumo:
BACKGROUND: DNA sequence polymorphisms analysis can provide valuable information on the evolutionary forces shaping nucleotide variation, and provides an insight into the functional significance of genomic regions. The recent ongoing genome projects will radically improve our capabilities to detect specific genomic regions shaped by natural selection. Current available methods and software, however, are unsatisfactory for such genome-wide analysis. RESULTS: We have developed methods for the analysis of DNA sequence polymorphisms at the genome-wide scale. These methods, which have been tested on a coalescent-simulated and actual data files from mouse and human, have been implemented in the VariScan software package version 2.0. Additionally, we have also incorporated a graphical-user interface. The main features of this software are: i) exhaustive population-genetic analyses including those based on the coalescent theory; ii) analysis adapted to the shallow data generated by the high-throughput genome projects; iii) use of genome annotations to conduct a comprehensive analyses separately for different functional regions; iv) identification of relevant genomic regions by the sliding-window and wavelet-multiresolution approaches; v) visualization of the results integrated with current genome annotations in commonly available genome browsers. CONCLUSION: VariScan is a powerful and flexible suite of software for the analysis of DNA polymorphisms. The current version implements new algorithms, methods, and capabilities, providing an important tool for an exhaustive exploratory analysis of genome-wide DNA polymorphism data.
Resumo:
The development of nuclear hormone receptor antagonists that directly inhibit the association of the receptor with its essential coactivators would allow useful manipulation of nuclear hormone receptor signaling. We previously identified 3-(dibutylamino)-1-(4-hexylphenyl)-propan-1-one (DHPPA), an aromatic β-amino ketone that inhibits coactivator recruitment to thyroid hormone receptor β (TRβ), in a high-throughput screen. Initial evidence suggested that the aromatic β-enone 1-(4-hexylphenyl)-prop-2-en-1-one (HPPE), which alkylates a specific cysteine residue on the TRβ surface, is liberated from DHPPA. Nevertheless, aspects of the mechanism and specificity of action of DHPPA remained unclear. Here, we report an x-ray structure of TRβ with the inhibitor HPPE at 2.3-Å resolution. Unreacted HPPE is located at the interface that normally mediates binding between TRβ and its coactivator. Several lines of evidence, including experiments with TRβ mutants and mass spectroscopic analysis, showed that HPPE specifically alkylates cysteine residue 298 of TRβ, which is located near the activation function-2 pocket. We propose that this covalent adduct formation proceeds through a two-step mechanism: 1) β-elimination to form HPPE; and 2) a covalent bond slowly forms between HPPE and TRβ. DHPPA represents a novel class of potent TRβ antagonist, and its crystal structure suggests new ways to design antagonists that target the assembly of nuclear hormone receptor gene-regulatory complexes and block transcription.
Resumo:
A change in paradigm is needed in the prevention of toxic effects on the nervous system, moving from its present reliance solely on data from animal testing to a prediction model mostly based on in vitro toxicity testing and in silico modeling. According to the report published by the National Research Council (NRC) of the US National Academies of Science, high-throughput in vitro tests will provide evidence for alterations in"toxicity pathways" as the best possible method of large scale toxicity prediction. The challenges to implement this proposal are enormous, and provide much room for debate. While many efforts address the technical aspects of implementing the vision, many questions around it need also to be addressed. Is the overall strategy the only one to be pursued? How can we move from current to future paradigms? Will we ever be able to reliably model for chronic and developmental neurotoxicity in vitro? This paper summarizes four presentations from a symposium held at the International Neurotoxicology Conference held in Xi"an, China, in June 2011. A. Li reviewed the current guidelines for neurotoxicity and developmental neurotoxicity testing, and discussed the major challenges existing to realize the NCR vision for toxicity testing. J. Llorens reviewed the biology of mammalian toxic avoidance in view of present knowledge on the physiology and molecular biology of the chemical senses, taste and smell. This background information supports the hypothesis that relating in vivo toxicity to chemical epitope descriptors that mimic the chemical encoding performed by the olfactory system may provide a way to the long term future of complete in silico toxicity prediction. S. Ceccatelli reviewed the implementation of rodent and human neural stem cells (NSCs) as models for in vitro toxicity testing that measures parameters such as cell proliferation, differentiation and migration. These appear to be sensitive endpoints that can identify substances with developmental neurotoxic potential. C. Sun ol reviewed the use of primary neuronal cultures in testing for neurotoxicity of environmental pollutants, including the study of the effects of persistent exposures and/or in differentiating cells, which allow recording of effects that can be extrapolated to human developmental neurotoxicity.
Resumo:
BACKGROUND: The need for an integrated view of data obtained from high-throughput technologies gave rise to network analyses. These are especially useful to rationalize how external perturbations propagate through the expression of genes. To address this issue in the case of drug resistance, we constructed biological association networks of genes differentially expressed in cell lines resistant to methotrexate (MTX). METHODS: Seven cell lines representative of different types of cancer, including colon cancer (HT29 and Caco2), breast cancer (MCF-7 and MDA-MB-468), pancreatic cancer (MIA PaCa-2), erythroblastic leukemia (K562) and osteosarcoma (Saos-2), were used. The differential expression pattern between sensitive and MTX-resistant cells was determined by whole human genome microarrays and analyzed with the GeneSpring GX software package. Genes deregulated in common between the different cancer cell lines served to generate biological association networks using the Pathway Architect software. RESULTS: Dikkopf homolog-1 (DKK1) is a highly interconnected node in the network generated with genes in common between the two colon cancer cell lines, and functional validations of this target using small interfering RNAs (siRNAs) showed a chemosensitization toward MTX. Members of the UDP-glucuronosyltransferase 1A (UGT1A) family formed a network of genes differentially expressed in the two breast cancer cell lines. siRNA treatment against UGT1A also showed an increase in MTX sensitivity. Eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) was overexpressed among the pancreatic cancer, leukemia and osteosarcoma cell lines, and siRNA treatment against EEF1A1 produced a chemosensitization toward MTX. CONCLUSIONS: Biological association networks identified DKK1, UGT1As and EEF1A1 as important gene nodes in MTX-resistance. Treatments using siRNA technology against these three genes showed chemosensitization toward MTX.
Resumo:
Background: TILLING (Targeting Induced Local Lesions IN Genomes) is a reverse genetic method that combines chemical mutagenesis with high-throughput genome-wide screening for point mutation detection in genes of interest. However, this mutation discovery approach faces a particular problem which is how to obtain a mutant population with a sufficiently high mutation density. Furthermore, plant mutagenesis protocols require two successive generations (M1, M2) for mutation fixation to occur before the analysis of the genotype can begin. Results: Here, we describe a new TILLING approach for rice based on ethyl methanesulfonate (EMS) mutagenesis of mature seed-derived calli and direct screening of in vitro regenerated plants. A high mutagenesis rate was obtained (i.e. one mutation in every 451 Kb) when plants were screened for two senescence-related genes. Screening was carried out in 2400 individuals from a mutant population of 6912. Seven sense change mutations out of 15 point mutations were identified. Conclusions: This new strategy represents a significant advantage in terms of time-savings (i.e. more than eight months), greenhouse space and work during the generation of mutant plant populations. Furthermore, this effective chemical mutagenesis protocol ensures high mutagenesis rates thereby saving in waste removal costs and the total amount of mutagen needed thanks to the mutagenesis volume reduction.
Resumo:
The development of nuclear hormone receptor antagonists that directly inhibit the association of the receptor with its essential coactivators would allow useful manipulation of nuclear hormone receptor signaling. We previously identified 3-(dibutylamino)-1-(4-hexylphenyl)-propan-1-one (DHPPA), an aromatic β-amino ketone that inhibits coactivator recruitment to thyroid hormone receptor β (TRβ), in a high-throughput screen. Initial evidence suggested that the aromatic β-enone 1-(4-hexylphenyl)-prop-2-en-1-one (HPPE), which alkylates a specific cysteine residue on the TRβ surface, is liberated from DHPPA. Nevertheless, aspects of the mechanism and specificity of action of DHPPA remained unclear. Here, we report an x-ray structure of TRβ with the inhibitor HPPE at 2.3-Å resolution. Unreacted HPPE is located at the interface that normally mediates binding between TRβ and its coactivator. Several lines of evidence, including experiments with TRβ mutants and mass spectroscopic analysis, showed that HPPE specifically alkylates cysteine residue 298 of TRβ, which is located near the activation function-2 pocket. We propose that this covalent adduct formation proceeds through a two-step mechanism: 1) β-elimination to form HPPE; and 2) a covalent bond slowly forms between HPPE and TRβ. DHPPA represents a novel class of potent TRβ antagonist, and its crystal structure suggests new ways to design antagonists that target the assembly of nuclear hormone receptor gene-regulatory complexes and block transcription.
Resumo:
Background MicroRNAs (miRNAs) are short non-coding regulatory RNAs that control gene expression usually producing translational repression and gene silencing. High-throughput sequencing technologies have revealed heterogeneity at length and sequence level for the majority of mature miRNAs (IsomiRs). Most isomiRs can be explained by variability in either Dicer1 or Drosha cleavage during miRNA biogenesis at 5" or 3" of the miRNA (trimming variants). Although isomiRs have been described in different tissues and organisms, their functional validation as modulators of gene expression remains elusive. Here we have characterized the expression and function of a highly abundant miR-101 5"-trimming variant (5"-isomiR-101). Results The analysis of small RNA sequencing data in several human tissues and cell lines indicates that 5"-isomiR-101 is ubiquitously detected and a highly abundant, especially in the brain. 5"- isomiR-101 was found in Ago-2 immunocomplexes and complementary approaches showed that 5"-isomiR-101 interacted with different members of the silencing (RISC) complex. In addition, 5"-isomiR-101 decreased the expression of five validated miR-101 targets, suggesting that it is a functional variant. Both the binding to RISC members and the degree of silencing were less efficient for 5"-isomiR-101 compared with miR-101. For some targets, both miR-101 and 5"-isomiR-101 significantly decreased protein expression with no changes in the respective mRNA levels. Although a high number of overlapping predicted targets suggest similar targeted biological pathways, a correlation analysis of the expression profiles of miR-101 variants and predicted mRNA targets in human brains at different ages, suggest specific functions for miR-101- and 5"-isomiR-101. Conclusions These results suggest that isomiRs are functional variants and further indicate that for a given miRNA, the different isomiRs may contribute to the overall effect as quantitative and qualitative fine-tuners of gene expression.
Resumo:
Despite the successful retrieval of genomes from past remains, the prospects for human palaeogenomics remain unclear because of the difficulty of distinguishing contaminant from endogenous DNA sequences. Previous sequence data generated on high-throughput sequencing platforms indicate that fragmentation of ancient DNA sequences is a characteristic trait primarily arising due to depurination processes that create abasic sites leading to DNA breaks.
Resumo:
Identification of chemical compounds with specific biological activities is an important step in both chemical biology and drug discovery. When the structure of the intended target is available, one approach is to use molecular docking programs to assess the chemical complementarity of small molecules with the target; such calculations provide a qualitative measure of affinity that can be used in virtual screening (VS) to rank order a list of compounds according to their potential to be active. rDock is a molecular docking program developed at Vernalis for high-throughput VS (HTVS) applications. Evolved from RiboDock, the program can be used against proteins and nucleic acids, is designed to be computationally very efficient and allows the user to incorporate additional constraints and information as a bias to guide docking. This article provides an overview of the program structure and features and compares rDock to two reference programs, AutoDock Vina (open source) and Schrodinger's Glide (commercial). In terms of computational speed for VS, rDock is faster than Vina and comparable to Glide. For binding mode prediction, rDock and Vina are superior to Glide. The VS performance of rDock is significantly better than Vina, but inferior to Glide for most systems unless pharmacophore constraints are used; in that case rDock and Glide are of equal performance. The program is released under the Lesser General Public License and is freely available for download, together with the manuals, example files and the complete test sets, at http://rdock.sourceforge.net/
Resumo:
Consensus is gathering that antimicrobial peptides that exert their antibacterial action at the membrane level must reach a local concentration threshold to become active. Studies of peptide interaction with model membranes do identify such disruptive thresholds but demonstrations of the possible correlation of these with the in vivo onset of activity have only recently been proposed. In addition, such thresholds observed in model membranes occur at local peptide concentrations close to full membrane coverage. In this work we fully develop an interaction model of antimicrobial peptides with biological membranes; by exploring the consequences of the underlying partition formalism we arrive at a relationship that provides antibacterial activity prediction from two biophysical parameters: the affinity of the peptide to the membrane and the critical bound peptide to lipid ratio. A straightforward and robust method to implement this relationship, with potential application to high-throughput screening approaches, is presented and tested. In addition, disruptive thresholds in model membranes and the onset of antibacterial peptide activity are shown to occur over the same range of locally bound peptide concentrations (10 to 100 mM), which conciliates the two types of observations
Resumo:
Current technology trends in medical device industry calls for fabrication of massive arrays of microfeatures such as microchannels on to nonsilicon material substrates with high accuracy, superior precision, and high throughput. Microchannels are typical features used in medical devices for medication dosing into the human body, analyzing DNA arrays or cell cultures. In this study, the capabilities of machining systems for micro-end milling have been evaluated by conducting experiments, regression modeling, and response surface methodology. In machining experiments by using micromilling, arrays of microchannels are fabricated on aluminium and titanium plates, and the feature size and accuracy (width and depth) and surface roughness are measured. Multicriteria decision making for material and process parameters selection for desired accuracy is investigated by using particle swarm optimization (PSO) method, which is an evolutionary computation method inspired by genetic algorithms (GA). Appropriate regression models are utilized within the PSO and optimum selection of micromilling parameters; microchannel feature accuracy and surface roughness are performed. An analysis for optimal micromachining parameters in decision variable space is also conducted. This study demonstrates the advantages of evolutionary computing algorithms in micromilling decision making and process optimization investigations and can be expanded to other applications