28 resultados para Hematopoietic Progenitor
Resumo:
Sugar beet (Beta vulgaris ssp. vulgaris) is an important crop of temperate climates which provides nearly 30% of the world's annual sugar production and is a source for bioethanol and animal feed. The species belongs to the order of Caryophylalles, is diploid with 2n = 18 chromosomes, has an estimated genome size of 714-758 megabases and shares an ancient genome triplication with other eudicot plants. Leafy beets have been cultivated since Roman times, but sugar beet is one of the most recently domesticated crops. It arose in the late eighteenth century when lines accumulating sugar in the storage root were selected from crosses made with chard and fodder beet. Here we present a reference genome sequence for sugar beet as the first non-rosid, non-asterid eudicot genome, advancing comparative genomics and phylogenetic reconstructions. The genome sequence comprises 567 megabases, of which 85% could be assigned to chromosomes. The assembly covers a large proportion of the repetitive sequence content that was estimated to be 63%. We predicted 27,421 protein-coding genes supported by transcript data and annotated them on the basis of sequence homology. Phylogenetic analyses provided evidence for the separation of Caryophyllales before the split of asterids and rosids, and revealed lineage-specific gene family expansions and losses. We sequenced spinach (Spinacia oleracea), another Caryophyllales species, and validated features that separate this clade from rosids and asterids. Intraspecific genomic variation was analysed based on the genome sequences of sea beet (Beta vulgaris ssp. maritima; progenitor of all beet crops) and four additional sugar beet accessions. We identified seven million variant positions in the reference genome, and also large regions of low variability, indicating artificial selection. The sugar beet genome sequence enables the identification of genes affecting agronomically relevant traits, supports molecular breeding and maximizes the plant's potential in energy biotechnology.
Resumo:
In vertebrates, early brain development takes place at the expanded anterior end of the neural tube. After closure of the anterior neuropore, the brain wall forms a physiologically sealed cavity that encloses embryonic cerebrospinal fluid (E-CSF), a complex and protein-rich fluid that is initially composed of trapped amniotic fluid. E-CSF has several crucial roles in brain anlagen development. Recently, we reported the presence of transient blood-CSF barrier located in the brain stem lateral to the ventral midline, at the mesencephalon and prosencephalon level, in chick and rat embryos by transporting proteins, water, ions and glucose in a selective manner via transcellular routes. To test the actual relevance of the control of E-CSF composition and homeostasis on early brain development by this embryonic blood-CSF barrier, we block the activity of this barrier by treating the embryos with 6-aminonicotinamide gliotoxin (6-AN). We demonstrate that 6-AN treatment in chick embryos blocks protein transport across the embryonic blood-CSF barrier, and that the disruption of the barrier properties is due to the cease transcellular caveolae transport, as detected by CAV-1 expression cease. We also show that the lack of protein transport across the embryonic blood-CSF barrier influences neuroepithelial cell survival, proliferation and neurogenesis, as monitored by neurepithelial progenitor cells survival, proliferation and neurogenesis. The blockage of embryonic blood-CSF transport also disrupts water influx to the E-CSF, as revealed by an abnormal increase in brain anlagen volume. These experiments contribute to delineate the actual extent of this blood-CSF embryonic barrier controlling E-CSF composition and homeostasis and the actual important of this control for early brain development, as well as to elucidate the mechanism by which proteins and water are transported thought transcellular routes across the neuroectoderm, reinforcing the crucial role of E-CSF for brain development.
Resumo:
En los últimos años se ha producido un incremento considerable en el número de familias monoparentales encabezadas por un solo progenitor. producto del aumento extraordinario de las rupturas conyugales. En esta situación un número creciente de niños y adolescentes pasan etapas más o menos largas de sus vidas a cargo de un progenitor divorciado y algunos de ellos/as conviven con una nueva pareja de su progenitor en una familia reconstituida. Existe una extensa producción sociológica que señala la monoparentalidad como uno de los principales factores que contribuyen a la desigualdad en la infancia. En el presente trabajo nos centramos en el efecto que la estructura del hogar produce sobre dimensiones relacionadas con el logro educativo de adolescentes y jóvenes los rendimientos educativos, la idoneidad en trayectoria educativa, y expectativas de estudiar una carrera universitaria así como en los factores que amortiguan ese efecto. Para ello analizamos datos del Panel de Familias e Infancia (realizado a 3.000 adolescentes y sus padres en Cataluña).Las evidencias obtenidos confirman un dato descrito en la mayor parte de la literatura existente en otros países: la mayor vulnerabilidad educativa entre los niños/as que viven en hogares monoparentales y familias reconstituidas. Tras la interrupción de la convivencia del menor con el progenitor que no obtiene la custodia, tienden a disminuir las inversiones que éste realiza en dos recursos cruciales para el logro educativo del menor, tiempo y dinero. Utilizando datos del Panel observamos que el grado de implicación del padre no residente en las actividades escolares del adolescente amortigua la relación entre monoparentalidad y bajos rendimientos académicos de los adolescentes.
Resumo:
Background: Nolz1 is a zinc finger transcription factor whose expression is enriched in the lateral ganglionic eminence (LGE), although its function is still unknown. Results: Here we analyze the role of Nolz1 during LGE development. We show that Nolz1 expression is high in proliferating neural progenitor cells (NPCs) of the LGE subventricular zone. In addition, low levels of Nolz1 are detected in the mantle zone, as well as in the adult striatum. Similarly, Nolz1 is highly expressed in proliferating LGE-derived NPC cultures, but its levels rapidly decrease upon cell differentiation, pointing to a role of Nolz1 in the control of NPC proliferation and/or differentiation. In agreement with this hypothesis, we find that Nolz1 over-expression promotes cell cycle exit of NPCs in neurosphere cultures and negatively regulates proliferation in telencephalic organotypic cultures. Within LGE primary cultures, Nolz1 over-expression promotes the acquisition of a neuronal phenotype, since it increases the number of β-III tubulin (Tuj1)- and microtubule-associated protein (MAP)2-positive neurons, and inhibits astrocyte generation and/or differentiation. Retinoic acid (RA) is one of the most important morphogens involved in striatal neurogenesis, and regulates Nolz1 expression in different systems. Here we show that Nolz1 also responds to this morphogen in E12.5 LGE-derived cell cultures. However, Nolz1 expression is not regulated by RA in E14.5 LGE-derived cell cultures, nor is it affected during LGE development in mouse models that present decreased RA levels. Interestingly, we find that Gsx2, which is necessary for normal RA signaling during LGE development, is also required for Nolz1 expression, which is lost in Gsx2 knockout mice. These findings suggest that Nolz1 might act downstream of Gsx2 to regulate RA-induced neurogenesis. Keeping with this hypothesis, we show that Nolz1 induces the selective expression of the RA receptor (RAR)β without altering RARα or RARγ. In addition, Nozl1 over-expression increases RA signaling since it stimulates the RA response element. This RA signaling is essential for Nolz1-induced neurogenesis, which is impaired in a RA-free environment or in the presence of a RAR inverse agonist. It has been proposed that Drosophila Gsx2 and Nolz1 homologues could cooperate with the transcriptional co-repressors Groucho-TLE to regulate cell proliferation. In agreement with this view, we show that Nolz1 could act in collaboration with TLE-4, as they are expressed at the same time in NPC cultures and during mouse development. Conclusions: Nolz1 promotes RA signaling in the LGE, contributing to the striatal neurogenesis during development.
Resumo:
Background: Nolz1 is a zinc finger transcription factor whose expression is enriched in the lateral ganglionic eminence (LGE), although its function is still unknown. Results: Here we analyze the role of Nolz1 during LGE development. We show that Nolz1 expression is high in proliferating neural progenitor cells (NPCs) of the LGE subventricular zone. In addition, low levels of Nolz1 are detected in the mantle zone, as well as in the adult striatum. Similarly, Nolz1 is highly expressed in proliferating LGE-derived NPC cultures, but its levels rapidly decrease upon cell differentiation, pointing to a role of Nolz1 in the control of NPC proliferation and/or differentiation. In agreement with this hypothesis, we find that Nolz1 over-expression promotes cell cycle exit of NPCs in neurosphere cultures and negatively regulates proliferation in telencephalic organotypic cultures. Within LGE primary cultures, Nolz1 over-expression promotes the acquisition of a neuronal phenotype, since it increases the number of β-III tubulin (Tuj1)- and microtubule-associated protein (MAP)2-positive neurons, and inhibits astrocyte generation and/or differentiation. Retinoic acid (RA) is one of the most important morphogens involved in striatal neurogenesis, and regulates Nolz1 expression in different systems. Here we show that Nolz1 also responds to this morphogen in E12.5 LGE-derived cell cultures. However, Nolz1 expression is not regulated by RA in E14.5 LGE-derived cell cultures, nor is it affected during LGE development in mouse models that present decreased RA levels. Interestingly, we find that Gsx2, which is necessary for normal RA signaling during LGE development, is also required for Nolz1 expression, which is lost in Gsx2 knockout mice. These findings suggest that Nolz1 might act downstream of Gsx2 to regulate RA-induced neurogenesis. Keeping with this hypothesis, we show that Nolz1 induces the selective expression of the RA receptor (RAR)β without altering RARα or RARγ. In addition, Nozl1 over-expression increases RA signaling since it stimulates the RA response element. This RA signaling is essential for Nolz1-induced neurogenesis, which is impaired in a RA-free environment or in the presence of a RAR inverse agonist. It has been proposed that Drosophila Gsx2 and Nolz1 homologues could cooperate with the transcriptional co-repressors Groucho-TLE to regulate cell proliferation. In agreement with this view, we show that Nolz1 could act in collaboration with TLE-4, as they are expressed at the same time in NPC cultures and during mouse development. Conclusions: Nolz1 promotes RA signaling in the LGE, contributing to the striatal neurogenesis during development.
Resumo:
Multiple myeloma is a monoclonal malignant proliferation of plasma cells that causes osteolytic lesions in the vertebrae, ribs, pelvic bone, skull and jaw. We report on a clinical case of an 81-year-old male patient who presented with a tumefaction in the mandibular symphysis region, which had evolved over the previous seven months. In the radiographic examination, an extensive osteolytic lesion was observed in the region mentioned above. An incisional biopsy was performed and a histopathological study revealed a malignant hematopoietic neoplasm formed by plasmacytoid cells. During the bone gammagraphy a dissemination of the disease was detected in the scapula, clavicle and ribs. The diagnosis was multiple myeloma. Knowledge about the maxillofacial manifestations of multiple myeloma is important for the early diagnosis of the disease, since its primary form can manifest itself in the jaw. In the clinical case presented here, we highlight the interdisciplinarity needed to obtain a diagnosis and treatment of multiple myeloma
Resumo:
We have compiled optical and radio astrometric data of the microquasar LS 5039 and derived its proper motion. This, together with the distance and radial velocity of the system, allows us to state that this source is escaping from its own regional standard of rest, with a total systemic velocity of about 150 km/s and a component perpendicular to the galactic plane larger than 100 km/s. This is probably the result of an acceleration obtained during the supernova event that created the compact object in this binary system. We have computed the trajectory of LS 5039 in the past, and searched for OB associations and supernova remnants in its path. In particular, we have studied the possible association between LS 5039 and the supernova remnant G016.8-01.1, which, despite our efforts, remains dubious. We have also discovered and studied an HI cavity in the ISM, which could have been created by the stellar wind of LS 5039 or by the progenitor of the compact object in the system. Finally, in the symmetric supernova explosion scenario, we estimate that at least 17 solar masses were lost in order to produce the high eccentricity observed. Such a mass loss could also explain the observed runaway velocity of the microquasar.
Resumo:
Recent studies have shown aberrant expression of SOX11 in various types of aggressive B-cell neoplasms. To elucidate the molecular mechanisms leading to such deregulation, we performed a comprehensive SOX11 gene expression and epigenetic study in stem cells, normal hematopoietic cells and different lymphoid neoplasms. We observed that SOX11 expression is associated with unmethylated DNA and presence of activating histone marks (H3K9/14Ac and H3K4me3) in embryonic stem cells and some aggressive B-cell neoplasms. In contrast, adult stem cells, normal hematopoietic cells and other lymphoid neoplasms do not express SOX11. Such repression was associated with silencing histone marks H3K9me2 and H3K27me3. The SOX11 promoter of non-malignant cells was consistently unmethylated whereas lymphoid neoplasms with silenced SOX11 tended to acquire DNA hypermethylation. SOX11 silencing in cell lines was reversed by the histone deacetylase inhibitor SAHA but not by the DNA methyltransferase inhibitor AZA. These data indicate that, although DNA hypermethylation of SOX11 is frequent in lymphoid neoplasms, it seems to be functionally inert, as SOX11 is already silenced in the hematopoietic system. In contrast, the pathogenic role of SOX11 is associated with its de novo expression in some aggressive lymphoid malignancies, which is mediated by a shift from inactivating to activating histone modifications.
Resumo:
The fusion of bone marrow (BM) hematopoietic cells with hepatocytes to generate BM derived hepatocytes (BMDH) is a natural process, which is enhanced in damaged tissues. However, the reprogramming needed to generate BMDH and the identity of the resultant cells is essentially unknown. In a mouse model of chronic liver damage, here we identify a modification in the chromatin structure of the hematopoietic nucleus during BMDH formation, accompanied by the loss of the key hematopoietic transcription factor PU.1/Sfpi1 (SFFV proviral integration 1) and gain of the key hepatic transcriptional regulator HNF-1A homeobox A (HNF-1A/Hnf1a). Through genome-wide expression analysis of laser captured BMDH, a differential gene expression pattern was detected and the chromatin changes observed were confirmed at the level of chromatin regulator genes. Similarly, Tranforming Growth Factor-β1 (TGF-β1) and neurotransmitter (e.g. Prostaglandin E Receptor 4 [Ptger4]) pathway genes were over-expressed. In summary, in vivo BMDH generation is a process in which the hematopoietic cell nucleus changes its identity and acquires hepatic features. These BMDHs have their own cell identity characterized by an expression pattern different from hematopoietic cells or hepatocytes. The role of these BMDHs in the liver requires further investigation.
Resumo:
Liver is unique in its capacity to regenerate in response to injury or tissue loss. Hepatocytes and other liver cells are able to proliferate and repopulate the liver. However, when this response is impaired, the contribution of hepatic progenitors becomes very relevant. Here, we present an update of recent studies on growth factors and cytokine-driven intracellular pathways that govern liver stem/progenitor cell expansion and differentiation, and the relevance of these signals in liver development, regeneration and carcinogenesis. Tyrosine kinase receptor signaling, in particular, c-Met, epidermal growth factor receptors or fibroblast growth factor receptors, contribute to proliferation, survival and differentiation of liver stem/progenitor cells. Different evidence suggests a dual role for the transforming growth factor (TGF)-β signaling pathway in liver stemness and differentiation. On the one hand, TGF-β mediates progression of differentiation from a progenitor stage, but on the other hand, it contributes to the expansion of liver stem cells. Hedgehog family ligands are necessary to promote hepatoblast proliferation but need to be shut off to permit subsequent hepatoblast differentiation. In the same line, the Wnt family and β-catenin/T-cell factor pathway is clearly involved in the maintenance of liver stemness phenotype, and its repression is necessary for liver differentiation during development. Collectively, data indicate that liver stem/progenitor cells follow their own rules and regulations. The same signals that are essential for their activation, expansion and differentiation are good candidates to contribute, under adequate conditions, to the paradigm of transformation from a pro-regenerative to a pro-tumorigenic role. From a clinical perspective, this is a fundamental issue for liver stem/progenitor cell-based therapies.
Resumo:
Chronic graft-versus-host disease (cGvHD) is the leading cause of late nonrelapse mortality (transplant-related mortality) after hematopoietic stem cell transplant. Given that there are a wide range of treatment options for cGvHD, assessment of the associated costs and efficacy can help clinicians and health care providers allocate health care resources more efficiently. OBJECTIVE: The purpose of this study was to assess the cost-effectiveness of extracorporeal photopheresis (ECP) compared with rituximab (Rmb) and with imatinib (Imt) in patients with cGvHD at 5 years from the perspective of the Spanish National Health System. METHODS: The model assessed the incremental cost-effectiveness/utility ratio of ECP versus Rmb or Imt for 1000 hypothetical patients by using microsimulation cost-effectiveness techniques. Model probabilities were obtained from the literature. Treatment pathways and adverse events were evaluated taking clinical opinion and published reports into consideration. Local data on costs (2010 Euros) and health care resources utilization were validated by the clinical authors. Probabilistic sensitivity analyses were used to assess the robustness of the model. RESULTS: The greater efficacy of ECP resulted in a gain of 0.011 to 0.024 quality-adjusted life-year in the first year and 0.062 to 0.094 at year 5 compared with Rmb or Imt. The results showed that the higher acquisition cost of ECP versus Imt was compensated for at 9 months by greater efficacy; this higher cost was partially compensated for ( 517) by year 5 versus Rmb. After 9 months, ECP was dominant (cheaper and more effective) compared with Imt. The incremental cost-effectiveness ratio of ECP versus Rmb was 29,646 per life-year gained and 24,442 per quality-adjusted life-year gained at year 2.5. Probabilistic sensitivity analysis confirmed the results. The main study limitation was that to assess relative treatment effects, only small studies were available for indirect comparison. CONCLUSION: ECP as a third-line therapy for cGvHD is a more cost-effective strategy than Rmb or Imt.
Resumo:
Glucose transporter 2 (GLUT2; gene name SLC2A2) has a key role in the regulation of glucose dynamics in organs central to metabolism. Although GLUT2 has been studied in the context of its participation in peripheral and central glucose sensing, its role in the brain is not well understood. To decipher the role of GLUT2 in brain development, we knocked down slc2a2 (glut2), the functional ortholog of human GLUT2, in zebrafish. Abrogation of glut2 led to defective brain organogenesis, reduced glucose uptake and increased programmed cell death in the brain. Coinciding with the observed localization of glut2 expression in the zebrafish hindbrain, glut2 deficiency affected the development of neural progenitor cells expressing the proneural genes atoh1b and ptf1a but not those expressing neurod. Specificity of the morphant phenotype was demonstrated by the restoration of brain organogenesis, whole-embryo glucose uptake, brain apoptosis, and expression of proneural markers in rescue experiments. These results indicate that glut2 has an essential role during brain development by facilitating the uptake and availability of glucose and support the involvement of glut2 in brain glucose sensing.
Resumo:
Sí, ja ho sé, el títol d'aquest article és redundant, atès que Nadal prové de natalici. Però és que vull parlar justament d'això, de naixements, coincidint amb la festa dedicada a aquest fet, el Nadal, malgrat que, segons la tradició, en la concepció de l'infant el naixement del qual es commemora no hi intervingué cap progenitor masculí. Potser és una manera poètica de fer referència al que tot sovint s'anomena "guerra de sexes", de la qual també parlaré tot seguit [...].