18 resultados para Hard texture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, edge matching puzzles, an NP-complete problem, have rececived, thanks to money-prized contests, considerable attention from wide audiences. We consider these competitions not only a challenge for SAT/CSP solving techniques but also as an opportunity to showcase the advances in the SAT/CSP community to a general audience. This paper studies the NP-complete problem of edge matching puzzles focusing on providing generation models of problem instances of variable hardness and on its resolution through the application of SAT and CSP techniques. From the generation side, we also identify the phase transition phenomena for each model. As solving methods, we employ both; SAT solvers through the translation to a SAT formula, and two ad-hoc CSP solvers we have developed, with different levels of consistency, employing several generic and specialized heuristics. Finally, we conducted an extensive experimental investigation to identify the hardest generation models and the best performing solving techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we show how a nonlinear preprocessing of speech signal -with high noise- based on morphological filters improves the performance of robust algorithms for pitch tracking (RAPT). This result happens for a very simple morphological filter. More sophisticated ones could even improve such results. Mathematical morphology is widely used in image processing and has a great amount of applications. Almost all its formulations derived in the two-dimensional framework are easily reformulated to be adapted to one-dimensional context

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a colour texture segmentation method, which unifies region and boundary information, is proposed. The algorithm uses a coarse detection of the perceptual (colour and texture) edges of the image to adequately place and initialise a set of active regions. Colour texture of regions is modelled by the conjunction of non-parametric techniques of kernel density estimation (which allow to estimate the colour behaviour) and classical co-occurrence matrix based texture features. Therefore, region information is defined and accurate boundary information can be extracted to guide the segmentation process. Regions concurrently compete for the image pixels in order to segment the whole image taking both information sources into account. Furthermore, experimental results are shown which prove the performance of the proposed method