38 resultados para Grid-based clustering approach
Resumo:
This paper proposes a new methodology to compute Value at Risk (VaR) for quantifying losses in credit portfolios. We approximate the cumulative distribution of the loss function by a finite combination of Haar wavelet basis functions and calculate the coefficients of the approximation by inverting its Laplace transform. The Wavelet Approximation (WA) method is specially suitable for non-smooth distributions, often arising in small or concentrated portfolios, when the hypothesis of the Basel II formulas are violated. To test the methodology we consider the Vasicek one-factor portfolio credit loss model as our model framework. WA is an accurate, robust and fast method, allowing to estimate VaR much more quickly than with a Monte Carlo (MC) method at the same level of accuracy and reliability.
Resumo:
This paper presents an automatic vision-based system for UUV station keeping. The vehicle is equipped with a down-looking camera, which provides images of the sea-floor. The station keeping system is based on a feature-based motion detection algorithm, which exploits standard correlation and explicit textural analysis to solve the correspondence problem. A visual map of the area surveyed by the vehicle is constructed to increase the flexibility of the system, allowing the vehicle to position itself when it has lost the reference image. The testing platform is the URIS underwater vehicle. Experimental results demonstrating the behavior of the system on a real environment are presented
Resumo:
The automatic interpretation of conventional traffic signs is very complex and time consuming. The paper concerns an automatic warning system for driving assistance. It does not interpret the standard traffic signs on the roadside; the proposal is to incorporate into the existing signs another type of traffic sign whose information will be more easily interpreted by a processor. The type of information to be added is profuse and therefore the most important object is the robustness of the system. The basic proposal of this new philosophy is that the co-pilot system for automatic warning and driving assistance can interpret with greater ease the information contained in the new sign, whilst the human driver only has to interpret the "classic" sign. One of the codings that has been tested with good results and which seems to us easy to implement is that which has a rectangular shape and 4 vertical bars of different colours. The size of these signs is equivalent to the size of the conventional signs (approximately 0.4 m2). The colour information from the sign can be easily interpreted by the proposed processor and the interpretation is much easier and quicker than the information shown by the pictographs of the classic signs
Resumo:
Positioning a robot with respect to objects by using data provided by a camera is a well known technique called visual servoing. In order to perform a task, the object must exhibit visual features which can be extracted from different points of view. Then, visual servoing is object-dependent as it depends on the object appearance. Therefore, performing the positioning task is not possible in presence of non-textured objects or objects for which extracting visual features is too complex or too costly. This paper proposes a solution to tackle this limitation inherent to the current visual servoing techniques. Our proposal is based on the coded structured light approach as a reliable and fast way to solve the correspondence problem. In this case, a coded light pattern is projected providing robust visual features independently of the object appearance
Resumo:
Process supervision is the activity focused on monitoring the process operation in order to deduce conditions to maintain the normality including when faults are present Depending on the number/distribution/heterogeneity of variables, behaviour situations, sub-processes, etc. from processes, human operators and engineers do not easily manipulate the information. This leads to the necessity of automation of supervision activities. Nevertheless, the difficulty to deal with the information complicates the design and development of software applications. We present an approach called "integrated supervision systems". It proposes multiple supervisors coordination to supervise multiple sub-processes whose interactions permit one to supervise the global process
Resumo:
This paper focuses on one of the methods for bandwidth allocation in an ATM network: the convolution approach. The convolution approach permits an accurate study of the system load in statistical terms by accumulated calculations, since probabilistic results of the bandwidth allocation can be obtained. Nevertheless, the convolution approach has a high cost in terms of calculation and storage requirements. This aspect makes real-time calculations difficult, so many authors do not consider this approach. With the aim of reducing the cost we propose to use the multinomial distribution function: the enhanced convolution approach (ECA). This permits direct computation of the associated probabilities of the instantaneous bandwidth requirements and makes a simple deconvolution process possible. The ECA is used in connection acceptance control, and some results are presented
Resumo:
Not considered in the analytical model of the plant, uncertainties always dramatically decrease the performance of the fault detection task in the practice. To cope better with this prevalent problem, in this paper we develop a methodology using Modal Interval Analysis which takes into account those uncertainties in the plant model. A fault detection method is developed based on this model which is quite robust to uncertainty and results in no false alarm. As soon as a fault is detected, an ANFIS model is trained in online to capture the major behavior of the occurred fault which can be used for fault accommodation. The simulation results understandably demonstrate the capability of the proposed method for accomplishing both tasks appropriately
Resumo:
A fundamental question in developmental biology is how tissues are patterned to give rise to differentiated body structures with distinct morphologies. The Drosophila wing disc offers an accessible model to understand epithelial spatial patterning. It has been studied extensively using genetic and molecular approaches. Bristle patterns on the thorax, which arise from the medial part of the wing disc, are a classical model of pattern formation, dependent on a pre-pattern of trans-activators and –repressors. Despite of decades of molecular studies, we still only know a subset of the factors that determine the pre-pattern. We are applying a novel and interdisciplinary approach to predict regulatory interactions in this system. It is based on the description of expression patterns by simple logical relations (addition, subtraction, intersection and union) between simple shapes (graphical primitives). Similarities and relations between primitives have been shown to be predictive of regulatory relationships between the corresponding regulatory factors in other Systems, such as the Drosophila egg. Furthermore, they provide the basis for dynamical models of the bristle-patterning network, which enable us to make even more detailed predictions on gene regulation and expression dynamics. We have obtained a data-set of wing disc expression patterns which we are now processing to obtain average expression patterns for each gene. Through triangulation of the images we can transform the expression patterns into vectors which can easily be analysed by Standard clustering methods. These analyses will allow us to identify primitives and regulatory interactions. We expect to identify new regulatory interactions and to understand the basic Dynamics of the regulatory network responsible for thorax patterning. These results will provide us with a better understanding of the rules governing gene regulatory networks in general, and provide the basis for future studies of the evolution of the thorax-patterning network in particular.
Resumo:
This paper shows how recently developed regression-based methods for thedecomposition of health inequality can be extended to incorporateindividual heterogeneity in the responses of health to the explanatoryvariables. We illustrate our method with an application to the CanadianNPHS of 1994. Our strategy for the estimation of heterogeneous responsesis based on the quantile regression model. The results suggest that thereis an important degree of heterogeneity in the association of health toexplanatory variables which, in turn, accounts for a substantial percentageof inequality in observed health. A particularly interesting finding isthat the marginal response of health to income is zero for healthyindividuals but positive and significant for unhealthy individuals. Theheterogeneity in the income response reduces both overall health inequalityand income related health inequality.
Resumo:
Surfactants are used as additives in topical pharmaceuticals and drug delivery systems. The biocompatibility of amino acid-based surfactants makes them highly suitable for use in these fields, but tests are needed to evaluate their potential toxicity. Here we addressed the sensitivity of tumor (HeLa, MCF-7) and non-tumor (3T3, 3T6, HaCaT, NCTC 2544) cell lines to the toxic effects of lysine-based surfactants by means of two in vitro endpoints (MTT and NRU). This comparative assay may serve as a reliable approach for predictive toxicity screening of chemicals prior to pharmaceutical applications. After 24-h of cell exposure to surfactants, differing toxic responses were observed. NCTC 2544 and 3T6 cell lines were the most sensitive, while both tumor cells and 3T3 fibroblasts were more resistant to the cytotoxic effects of surfactants. IC50-values revealed that cytotoxicity was detected earlier by MTT assay than by NRU assay, regardless of the compound or cell line. The overall results showed that surfactants with organic counterions were less cytotoxic than those with inorganic counterions. Our findings highlight the relevance of the correct choice and combination of cell lines and bioassays in toxicity studies for a safe and reliable screen of chemicals with potential interest in pharmaceutical industry.
Resumo:
We present an agent-based model with the aim of studying how macro-level dynamics of spatial distances among interacting individuals in a closed space emerge from micro-level dyadic and local interactions. Our agents moved on a lattice (referred to as a room) using a model implemented in a computer program called P-Space in order to minimize their dissatisfaction, defined as a function of the discrepancy between the real distance and the ideal, or desired, distance between agents. Ideal distances evolved in accordance with the agent's personal and social space, which changed throughout the dynamics of the interactions among the agents. In the first set of simulations we studied the effects of the parameters of the function that generated ideal distances, and in a second set we explored how group macrolevel behavior depended on model parameters and other variables. We learned that certain parameter values yielded consistent patterns in the agents' personal and social spaces, which in turn led to avoidance and approaching behaviors in the agents. We also found that the spatial behavior of the group of agents as a whole was influenced by the values of the model parameters, as well as by other variables such as the number of agents. Our work demonstrates that the bottom-up approach is a useful way of explaining macro-level spatial behavior. The proposed model is also shown to be a powerful tool for simulating the spatial behavior of groups of interacting individuals.
Resumo:
In this paper, we present a critical analysis of the state of the art in the definition and typologies of paraphrasing. This analysis shows that there exists no characterization of paraphrasing that is comprehensive, linguistically based and computationally tractable at the same time. The following sets out to define and delimit the concept on the basis of the propositional content. We present a general, inclusive and computationally oriented typology of the linguistic mechanisms that give rise to form variations between paraphrase pairs.
Resumo:
In this paper, we describe several techniques for detecting tonic pitch value in Indian classical music. In Indian music, the raga is the basic melodic framework and it is built on the tonic. Tonic detection is therefore fundamental for any melodic analysis in Indian classical music. This workexplores detection of tonic by processing the pitch histograms of Indian classic music. Processing of pitch histograms using group delay functions and its ability to amplify certain traits of Indian music in the pitch histogram, is discussed. Three different strategies to detect tonic, namely, the concert method, the template matching and segmented histogram method are proposed. The concert method exploits the fact that the tonic is constant over a piece/concert.templatematchingmethod and segmented histogrammethodsuse the properties: (i) the tonic is always present in the background, (ii) some notes are less inflected and dominant, to detect the tonic of individual pieces. All the three methods yield good results for Carnatic music (90−100% accuracy), while for Hindustanimusic, the templatemethod works best, provided the v¯adi samv¯adi notes for a given piece are known (85%).
Resumo:
In this paper we propose an endpoint detection system based on the use of several features extracted from each speech frame, followed by a robust classifier (i.e Adaboost and Bagging of decision trees, and a multilayer perceptron) and a finite state automata (FSA). We present results for four different classifiers. The FSA module consisted of a 4-state decision logic that filtered false alarms and false positives. We compare the use of four different classifiers in this task. The look ahead of the method that we propose was of 7 frames, which are the number of frames that maximized the accuracy of the system. The system was tested with real signals recorded inside a car, with signal to noise ratio that ranged from 6 dB to 30dB. Finally we present experimental results demonstrating that the system yields robust endpoint detection.