30 resultados para Graphic of a Function
Resumo:
We propose an iterative procedure to minimize the sum of squares function which avoids the nonlinear nature of estimating the first order moving average parameter and provides a closed form of the estimator. The asymptotic properties of the method are discussed and the consistency of the linear least squares estimator is proved for the invertible case. We perform various Monte Carlo experiments in order to compare the sample properties of the linear least squares estimator with its nonlinear counterpart for the conditional and unconditional cases. Some examples are also discussed
Resumo:
Background: Annotations of completely sequenced genomes reveal that nearly half of the genes identified are of unknown function, and that some belong to uncharacterized gene families. To help resolve such issues, information can be obtained from the comparative analysis of homologous genes in model organisms. Results: While characterizing genes from the retinitis pigmentosa locus RP26 at 2q31-q33, we have identified a new gene, ORMDL1, that belongs to a novel gene family comprising three genes in humans (ORMDL1, ORMDL2 and ORMDL3), and homologs in yeast, microsporidia, plants, Drosophila, urochordates and vertebrates. The human genes are expressed ubiquitously in adult and fetal tissues. The Drosophila ORMDL homolog is also expressed throughout embryonic and larval stages, particularly in ectodermally derived tissues. The ORMDL genes encode transmembrane proteins anchored in the endoplasmic reticulum (ER). Double knockout of the two Saccharomyces cerevisiae homologs leads to decreased growth rate and greater sensitivity to tunicamycin and dithiothreitol. Yeast mutants can be rescued by human ORMDL homologs. Conclusions: From protein sequence comparisons we have defined a novel gene family, not previously recognized because of the absence of a characterized functional signature. The sequence conservation of this family from yeast to vertebrates, the maintenance of duplicate copies in different lineages, the ubiquitous pattern of expression in human and Drosophila, the partial functional redundancy of the yeast homologs and phenotypic rescue by the human homologs, strongly support functional conservation. Subcellular localization and the response of yeast mutants to specific agents point to the involvement of ORMDL in protein folding in the ER.
Resumo:
Complexity of biological function relies on large networks of interacting molecules. However, the evolutionary properties of these networks are not fully understood. It has been shown that selective pressures depend on the position of genes in the network. We have previously shown that in the Drosophila insulin/target of rapamycin (TOR) signal transduction pathway there is a correlation between the pathway position and the strength of purifying selection, with the downstream genes being most constrained. In this study, we investigated the evolutionary dynamics of this well-characterized pathway in vertebrates. More specifically, we determined the impact of natural selection on the evolution of 72 genes of this pathway. We found that in vertebrates there is a similar gradient of selective constraint in the insulin/TOR pathway to that found in Drosophila. This feature is neither the result of a polarity in the impact of positive selection nor of a series of factors affecting selective constraint levels (gene expression level and breadth, codon bias, protein length, and connectivity). We also found that pathway genes encoding physically interacting proteins tend to evolve under similar selective constraints. The results indicate that the architecture of the vertebrate insulin/TOR pathway constrains the molecular evolution of its components. Therefore, the polarity detected in Drosophila is neither specific nor incidental of this genus. Hence, although the underlying biological mechanisms remain unclear, these may be similar in both vertebrates and Drosophila.
Resumo:
We propose an iterative procedure to minimize the sum of squares function which avoids the nonlinear nature of estimating the first order moving average parameter and provides a closed form of the estimator. The asymptotic properties of the method are discussed and the consistency of the linear least squares estimator is proved for the invertible case. We perform various Monte Carlo experiments in order to compare the sample properties of the linear least squares estimator with its nonlinear counterpart for the conditional and unconditional cases. Some examples are also discussed
Resumo:
Background: The relevance of immune-endocrine interactions to the regulation of ovarian function in teleosts is virtually unexplored. As part of the innate immune response during infection, a number of cytokines such as tumor necrosis factor alpha (TNF alpha) and other immune factors, are produced and act on the reproductive system. However, TNF alpha is also an important physiological player in the ovulatory process in mammals. In the present study, we have examined for the first time the effects of TNF alpha in vitro in preovulatory ovarian follicles of a teleost fish, the brown trout (Salmo trutta). Methods: To determine the in vivo regulation of TNF alpha expression in the ovary, preovulatory brook trout (Salvelinus fontinalis) were injected intraperitoneally with either saline or bacterial lipopolysaccharide (LPS). In control and recombinant trout TNF alpha (rtTNF alpha)-treated brown trout granulosa cells, we examined the percentage of apoptosis by flow cytometry analysis and cell viability by propidium iodide (PI) staining. Furthermore, we determined the in vitro effects of rtTNF alpha on follicle contraction and testosterone production in preovulatory brown trout ovarian follicles. In addition, we analyzed the gene expression profiles of control and rtTNF alpha-treated ovarian tissue by microarray and real-time PCR (qPCR) analyses. Results: LPS administration in vivo causes a significant induction of the ovarian expression of TNF alpha. Treatment with rtTNF alpha induces granulosa cell apoptosis, decreases granulosa cell viability and stimulates the expression of genes known to be involved in the normal ovulatory process in trout. In addition, rtTNF alpha causes a significant increase in follicle contraction and testosterone production. Also, using a salmonid-specific microarray platform (SFA2.0 immunochip) we observed that rtTNF alpha induces the expression of genes known to be involved in inflammation, proteolysis and tissue remodeling. Furthermore, the expression of kallikrein, TOP-2, serine protease 23 and ADAM 22, genes that have been postulated to be involved in proteolytic and tissue remodeling processes during ovulation in trout, increases in follicles incubated in the presence of rtTNF alpha. Conclusions In view of these results, we propose that TNF alpha could have an important role in the biomechanics of follicle weakening, ovarian rupture and oocyte expulsion during ovulation in trout, primarily through its stimulation of follicular cell apoptosis and the expression of genes involved in follicle wall proteolysis and contraction.
Resumo:
Next-generation sequencing techniques such as exome sequencing can successfully detect all genetic variants in a human exome and it has been useful together with the implementation of variant filters to identify causing-disease mutations. Two filters aremainly used for the mutations identification: low allele frequency and the computational annotation of the genetic variant. Bioinformatic tools to predict the effect of a givenvariant may have errors due to the existing bias in databases and sometimes show a limited coincidence among them. Advances in functional and comparative genomics are needed in order to properly annotate these variants.The goal of this study is to: first, functionally annotate Common Variable Immunodeficiency disease (CVID) variants with the available bioinformatic methods in order to assess the reliability of these strategies. Sencondly, as the development of new methods to reduce the number of candidate genetic variants is an active and necessary field of research, we are exploring the utility of gene function information at organism level as a filter for rare disease genes identification. Recently, it has been proposed that only 10-15% of human genes are essential and therefore we would expect that severe rare diseases are mostly caused by mutations on them. Our goal is to determine whether or not these rare and severe diseases are caused by deleterious mutations in these essential genes. If this hypothesis were true, taking into account essential genes as a filter would be an interesting parameter to identify causingdisease mutations.
Resumo:
Here we report that the kinesin-5 motor Klp61F, which is known for its role in bipolar spindle formation in mitosis, is required for protein transport from the Golgi complex to the cell surface in Drosophila S2 cells. Disrupting the function of its mammalian orthologue, Eg5, in HeLa cells inhibited secretion of a protein called pancreatic adenocarcinoma up-regulated factor (PAUF) but, surprisingly, not the trafficking of vesicular stomatitis virus G protein (VSV-G) to the cell surface. We have previously reported that PAUF is transported from the trans-Golgi network (TGN) to the cell surface in specific carriers called CARTS that exclude VSV-G. Inhibition of Eg5 function did not affect the biogenesis of CARTS; however, their migration was delayed and they accumulated near the Golgi complex. Altogether, our findings reveal a surprising new role of Eg5 in nonmitotic cells in the facilitation of the transport of specific carriers, CARTS, from the TGN to the cell surface.
Resumo:
Intrinsic resistance to the epidermal growth factor receptor (EGFR; HER1) tyrosine kinase inhibitor (TKI) gefitinib, and more generally to EGFR TKIs, is a common phenomenon in breast cancer. The availability of molecular criteria for predicting sensitivity to EGFR-TKIs is, therefore, the most relevant issue for their correct use and for planning future research. Though it appears that in non-small-cell lung cancer (NSCLC) response to gefitinib is directly related to the occurrence of specific mutations in the EGFR TK domain, breast cancer patients cannot be selected for treatment with gefitinib on the same basis as such EGFR mutations have beenreported neither in primary breast carcinomas nor in several breast cancer cell lines. Alternatively, there is a generalagreement on the hypothesis that the occurrence of molecular alterations that activate transduction pathways downstreamof EGFR (i.e., MEK1/MEK2 - ERK1/2 MAPK and PI-3'K - AKT growth/survival signaling cascades) significantly affect the response to EGFR TKIs in breast carcinomas. However,there are no studies so far addressing a role of EGF-related ligands as intrinsic breast cancer cell modulators of EGFR TKIefficacy. We recently monitored gene expression profiles andsub-cellular localization of HER-1/-2/-3/-4 related ligands (i.e., EGF, amphiregulin, transforming growth factor-α, ß-cellulin,epiregulin and neuregulins) prior to and after gefitinib treatment in a panel of human breast cancer cell lines. First, gefitinibinduced changes in the endogenous levels of EGF-related ligands correlated with the natural degree of breast cancer cellsensitivity to gefitinib. While breast cancer cells intrinsically resistant to gefitinib (IC50 ≥15 μM) markedly up-regulated(up to 600 times) the expression of genes codifying for HERspecific ligands, a significant down-regulation (up to 106 times)of HER ligand gene transcription was found in breast cancer cells intrinsically sensitive to gefitinib (IC50 ≤1 μM). Second,loss of HER1 function differentially regulated the nuclear trafficking of HER-related ligands. While gefitinib treatment induced an active import and nuclear accumulation of the HER ligand NRG in intrinsically gefitinib-resistant breastcancer cells, an active export and nuclear loss of NRG was observed in intrinsically gefitinib-sensitive breast cancer cells.In summary, through in vitro and pharmacodynamic studies we have learned that, besides mutations in the HER1 gene,oncogenic changes downstream of HER1 are the key players regulating gefitinib efficacy in breast cancer cells. It now appears that pharmacological inhibition of HER1 functionalso leads to striking changes in both the gene expression and the nucleo-cytoplasmic trafficking of HER-specific ligands,and that this response correlates with the intrinsic degree of breast cancer sensitivity to the EGFR TKI gefitinib. Therelevance of this previously unrecognized intracrine feedback to gefitinib warrants further studies as cancer cells could bypassthe antiproliferative effects of HER1-targeted therapeutics without a need for the overexpression and/or activation of other HER family members and/or the activation of HER-driven downstream signaling cascades
Resumo:
Background: Annotations of completely sequenced genomes reveal that nearly half of the genes identified are of unknown function, and that some belong to uncharacterized gene families. To help resolve such issues, information can be obtained from the comparative analysis of homologous genes in model organisms. Results: While characterizing genes from the retinitis pigmentosa locus RP26 at 2q31-q33, we have identified a new gene, ORMDL1, that belongs to a novel gene family comprising three genes in humans (ORMDL1, ORMDL2 and ORMDL3), and homologs in yeast, microsporidia, plants, Drosophila, urochordates and vertebrates. The human genes are expressed ubiquitously in adult and fetal tissues. The Drosophila ORMDL homolog is also expressed throughout embryonic and larval stages, particularly in ectodermally derived tissues. The ORMDL genes encode transmembrane proteins anchored in the endoplasmic reticulum (ER). Double knockout of the two Saccharomyces cerevisiae homologs leads to decreased growth rate and greater sensitivity to tunicamycin and dithiothreitol. Yeast mutants can be rescued by human ORMDL homologs. Conclusions: From protein sequence comparisons we have defined a novel gene family, not previously recognized because of the absence of a characterized functional signature. The sequence conservation of this family from yeast to vertebrates, the maintenance of duplicate copies in different lineages, the ubiquitous pattern of expression in human and Drosophila, the partial functional redundancy of the yeast homologs and phenotypic rescue by the human homologs, strongly support functional conservation. Subcellular localization and the response of yeast mutants to specific agents point to the involvement of ORMDL in protein folding in the ER.
Resumo:
Background: Few clinical studies have focused on the alcoholindependent cardiovascular effects of the phenolic compounds of red wine (RW). Objective: We aimed to evaluate the effects of ethanol and phenolic compounds of RW on the expression of inflammatory biomarkers related to atherosclerosis in subjects at high risk of cardiovascular disease. Design: Sixty-seven high-risk, male volunteers were included in a randomized, crossover consumption trial. After a washout period, all subjects received RW (30 g alcohol/d), the equivalent amount of dealcoholized red wine (DRW), or gin (30 g alcohol/d) for 4 wk. Before and after each intervention period, 7 cellular and 18 serum inflammatory biomarkers were evaluated. Results: Alcohol increased IL-10 and decreased macrophage-derived chemokine concentrations, whereas the phenolic compounds of RW decreased serum concentrations of intercellular adhesion molecule- 1, E-selectin, and IL-6 and inhibited the expression of lymphocyte function-associated antigen 1 in T lymphocytes and macrophage-1 receptor, Sialil-Lewis X, and C-C chemokine receptor type 2 expression in monocytes. Both ethanol and phenolic compounds of RW downregulated serum concentrations of CD40 antigen, CD40 ligand, IL-16, monocyte chemotactic protein-1, and vascular cell adhesion molecule-1. Conclusion: The results suggest that the phenolic content of RW may modulate leukocyte adhesion molecules, whereas both ethanol and polyphenols of RW may modulate soluble inflammatory mediators in high-risk patients. The trial was registered in the International Standard Randomized Controlled Trial Number Register at http://www. isrctn.org/ as ISRCTN88720134
Resumo:
Background: Few clinical studies have focused on the alcoholindependent cardiovascular effects of the phenolic compounds of red wine (RW). Objective: We aimed to evaluate the effects of ethanol and phenolic compounds of RW on the expression of inflammatory biomarkers related to atherosclerosis in subjects at high risk of cardiovascular disease. Design: Sixty-seven high-risk, male volunteers were included in a randomized, crossover consumption trial. After a washout period, all subjects received RW (30 g alcohol/d), the equivalent amount of dealcoholized red wine (DRW), or gin (30 g alcohol/d) for 4 wk. Before and after each intervention period, 7 cellular and 18 serum inflammatory biomarkers were evaluated. Results: Alcohol increased IL-10 and decreased macrophage-derived chemokine concentrations, whereas the phenolic compounds of RW decreased serum concentrations of intercellular adhesion molecule- 1, E-selectin, and IL-6 and inhibited the expression of lymphocyte function-associated antigen 1 in T lymphocytes and macrophage-1 receptor, Sialil-Lewis X, and C-C chemokine receptor type 2 expression in monocytes. Both ethanol and phenolic compounds of RW downregulated serum concentrations of CD40 antigen, CD40 ligand, IL-16, monocyte chemotactic protein-1, and vascular cell adhesion molecule-1. Conclusion: The results suggest that the phenolic content of RW may modulate leukocyte adhesion molecules, whereas both ethanol and polyphenols of RW may modulate soluble inflammatory mediators in high-risk patients. The trial was registered in the International Standard Randomized Controlled Trial Number Register at http://www. isrctn.org/ as ISRCTN88720134
Resumo:
We experimentally identified the activities of six predicted heptosyltransferases in Actinobacillus pleuropneumoniae genome serotype 5b strain L20 and serotype 3 strain JL03. The initial identification was based on a bioinformatic analysis of the amino acid similarity between these putative heptosyltrasferases with others of known function from enteric bacteria and Aeromonas. The putative functions of all the Actinobacillus pleuropneumoniae heptosyltrasferases were determined by using surrogate LPS acceptor molecules from well-defined A. hydrophyla AH-3 and A. salmonicida A450 mutants. Our results show that heptosyltransferases APL_0981 and APJL_1001 are responsible for the transfer of the terminal outer core D-glycero-D-manno-heptose (D,D-Hep) residue although they are not currently included in the CAZY glycosyltransferase 9 family. The WahF heptosyltransferase group signature sequence [S(T/S)(GA)XXH] differs from the heptosyltransferases consensus signature sequence [D(TS)(GA)XXH], because of the substitution of D(261) for S(261), being unique.
Resumo:
MOTOR IMPAIRMENTS ARE COMMON AFTER STROKE but efficacious therapies for these dysfunctions are scarce. Extending an earlier study on the effects of music-supported training (MST), behavioral indices of motor function were obtained before and after a series of training sessions to assess whether this new treatment leads to improved motor functions. Furthermore, music-supported training was contrasted to functional motor training according to the principles of constraint-induced therapy (CIT). In addition to conventional physiotherapy, 32 stroke patients with moderately impaired motor function and no previous musical experience received 15 sessions of MST over a period of three weeks, using a manualized, step-bystep approach. A control group consisting of 15 patients received 15 sessions of CIT in addition to conventional physiotherapy. A third group of 30 patients received exclusively conventional physiotherapy and served as a control group for the other three groups. Fine as well as gross motor skills were trained by using either a MIDI-piano or electronic drum pads programmed to emit piano tones. Motor functions were assessed by an extensive test battery. MST yielded significant improvement in fine as well as gross motor skills with respect to speed, precision, and smoothness of movements. These improvements were greater than after CIT or conventional physiotherapy. In conclusion, with equal treatment intensity, MST leads to more pronounced improvements of motor functions after stroke than CIT.
Resumo:
This paper provides a map of the scientific productivity of authors affiliated to a Spanish institution and who have addressed one of the most important current topics in schizophrenia: The study of cognitive performance. A search of the Web of Science yielded 125 articles that met the inclusion criteria. In order to provide a comprehensive overview of scientific productivity, we examine several bibliometric indicators, concerning both productivity and impact or visibility. The analysis also focuses on qualitative aspects of key theoretical importance, such as the kinds of cognitive functions that are most often assessed and the tests most widely used to evaluate them in clinical practice. The study shows that interest in the subject of cognitive function in schizophrenia has increased considerably in Spain since the beginning of this century. The results also highlight the need to standardize the type of tests to be used in the cognitive assessment of patients with schizophrenia.
Resumo:
A variety of language disturbances including aphasia have been described after subcortical stroke but less is known about the factors that influence the long-term recovery of stroke-induced language dysfunction. We prospectively examined the role of the affected hemisphere and the lesion site in the occurrence and recovery of language deficits in nonthalamic subcortical stroke. Forty patients with unilateral basal gangliastroke underwent language assessment within 1 week, 3 months and 1 year after stroke. Disturbances in at least one language domain were observed in 35 patients during the first week post stroke including aphasia diagnosed in 11 patients. Importantly, the appearance of deficits after stroke onset and the improvement of language function were not determined by the site of subcortical lesion, but instead were critically influenced by the affected hemisphere. In fact, the language impairments following left and right basal ganglia stroke mirrored the language dysfunction observed after cortical lesions in the same hemisphere. A significant overall language improvement was observed at 3 months after stroke, although residual deficits in languageexecutive function were the most commonly observed impairment at 1 year follow-up. Although a substantial improvement of language function can be expected after nonthalamic subcortical stroke, our findings suggest that language recovery may not be fully achieved at 1 year post