31 resultados para Glucose Uptake


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Newly synthesized glucose transporter 4 (GLUT4) enters into the insulin-responsive storage compartment in a process that is Golgi-localized γ-ear-containing Arf-binding protein (GGA) dependent, whereas insulin-stimulated translocation is regulated by Akt substrate of 160 kDa (AS160). In the present study, using a variety of GLUT4/GLUT1 chimeras, we have analyzed the specific motifs of GLUT4 that are important for GGA and AS160 regulation of GLUT4 trafficking. Substitution of the amino terminus and the large intracellular loop of GLUT4 into GLUT1 (chimera 1-441) fully recapitulated the basal state retention, insulin-stimulated translocation, and GGA and AS160 sensitivity of wild-type GLUT4 (GLUT4-WT). GLUT4 point mutation (GLUT4-F5A) resulted in loss of GLUT4 intracellular retention in the basal state when coexpressed with both wild-type GGA and AS160. Nevertheless, similar to GLUT4-WT, the insulin-stimulated plasma membrane localization of GLUT4-F5A was significantly inhibited by coexpression of dominant-interfering GGA. In addition, coexpression with a dominant-interfering AS160 (AS160-4P) abolished insulin-stimulated GLUT4-WT but not GLUT4-F5A translocation. GLUT4 endocytosis and intracellular sequestration also required both the amino terminus and large cytoplasmic loop of GLUT4. Furthermore, both the FQQI and the SLL motifs participate in the initial endocytosis from the plasma membrane; however, once internalized, unlike the FQQI motif, the SLL motif is not responsible for intracellular recycling of GLUT4 back to the specialized compartment. Together, we have demonstrated that the FQQI motif within the amino terminus of GLUT4 is essential for GLUT4 endocytosis and AS160-dependent intracellular retention but not for the GGA-dependent sorting of GLUT4 into the insulin-responsive storage compartment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a constituent of selenoproteins, selenium (Se) is considered an essential element for human health.The main way that Se enters the body is via the consumption of vegetables, whose concentration of thiselement depends on soil Se content. We grew cabbage, lettuce, chard and parsley, in peat enriched in Seby means of the additive Selcote Ultra®and Na2SeO3and Na2SeO4. Total Se in plants was determinedby acidic digestion and Se speciation by an enzymatic extraction. Both were measured by ICP/MS. Theconcentration ranges were between 0.1 mg Se kg−1and 30 mg Se kg−1for plants grown in Selcote Ultra®media, and between 0.4 mg Se kg−1and 1606 mg Se kg−1for those grown in peat enriched with Se sodiumsalts. We found Se (IV), Se (VI) and SeMet in all the extracts. Peat fortified with Selcote Ultra®gave slightlyhigher Se concentration than natural content values. For plants grown with selenium sodium salts, Secontent increases with the Se added and part of the inorganic Se was converted mainly to SeMet. A highSe fortification can damage or inhibit plant growth. Cabbage showed the greatest tolerance to Se.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type 1 diabetic patients depend on external insulin delivery to keep their blood glucose within near-normal ranges. In this work, two robust closed-loop controllers for blood glucose regulation are developed to prevent the life-threatening hypoglycemia, as well as to avoid extended hyperglycemia. The proposed controllers are designed by using the sliding mode control technique in a Smith predictor structure. To improve meal disturbance rejection, a simple feedforward controller is added to inject meal-time insulin bolus. Simulations scenarios were used to test the controllers, and showed the controllers ability to maintain the glucose levels within the safe limits in the presence of errors in measurements, modeling and meal estimation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a control strategy for blood glucose(BG) level regulation in type 1 diabetic patients. To design the controller, model-based predictive control scheme has been applied to a newly developed diabetic patient model. The controller is provided with a feedforward loop to improve meal compensation, a gain-scheduling scheme to account for different BG levels, and an asymmetric cost function to reduce hypoglycemic risk. A simulation environment that has been approved for testing of artificial pancreas control algorithms has been used to test thecontroller. The simulation results show a good controller performance in fasting conditions and meal disturbance rejection, and robustness against model–patient mismatch and errors in mealestimation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White adipose tissue (WAT) produces lactate in significant amount from circulating glucose, especially in obesity;Under normoxia, 3T3L1 cells secrete large quantities of lactate to the medium, again at the expense of glucose and proportionally to its levels. Most of the glucose was converted to lactate with only part of it being used to synthesize fat. Cultured adipocytes were largely anaerobic, but this was not a Warburg-like process. It is speculated that the massive production of lactate, is a process of defense of the adipocyte, used to dispose of excess glucose. This way, the adipocyte exports glucose carbon (and reduces the problem of excess substrate availability) to the liver, but the process may be also a mechanism of short-term control of hyperglycemia. The in vivo data obtained from adipose tissue of male rats agree with this interpretation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White adipose tissue (WAT) produces lactate in significant amount from circulating glucose, especially in obesity;Under normoxia, 3T3L1 cells secrete large quantities of lactate to the medium, again at the expense of glucose and proportionally to its levels. Most of the glucose was converted to lactate with only part of it being used to synthesize fat. Cultured adipocytes were largely anaerobic, but this was not a Warburg-like process. It is speculated that the massive production of lactate, is a process of defense of the adipocyte, used to dispose of excess glucose. This way, the adipocyte exports glucose carbon (and reduces the problem of excess substrate availability) to the liver, but the process may be also a mechanism of short-term control of hyperglycemia. The in vivo data obtained from adipose tissue of male rats agree with this interpretation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mucin 5AC (MUC5AC) is secreted by goblet cells of the respiratory tract and, surprisingly, also expressed de novo in mucus secreting cancer lines. siRNA-mediated knockdown of 7343 human gene products in a human colonic cancer goblet cell line (HT29-18N2) revealed new proteins, including a Ca(2+)-activated channel TRPM5, for MUC5AC secretion. TRPM5 was required for PMA and ATP-induced secretion of MUC5AC from the post-Golgi secretory granules. Stable knockdown of TRPM5 reduced a TRPM5-like current and ATP-mediated Ca(2+) signal. ATP-induced MUC5AC secretion depended strongly on Ca(2+) influx, which was markedly reduced in TRPM5 knockdown cells. The difference in ATP-induced Ca(2+) entry between control and TRPM5 knockdown cells was abrogated in the absence of extracellular Ca(2+) and by inhibition of the Na(+)/Ca(2+) exchanger (NCX). Accordingly, MUC5AC secretion was reduced by inhibition of NCX. Thus TRPM5 activation by ATP couples TRPM5-mediated Na(+) entry to promote Ca(2+) uptake via an NCX to trigger MUC5AC secretion

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INDISIM-YEAST, an individual-based simulator, models the evolution of a yeast population by settingup rules of behaviour for each individual cell according to their own biological rules and characteristics. Ittakes into account the uptake, metabolism, budding reproduction and viability of the yeast cells, over aperiod of time in the bulk of a liquid medium, occupying a three dimensional closed spatial grid with twokinds of particles (glucose and ethanol). Each microorganism is characterized by its biomass, genealogicalage, states in the budding cellular reproduction cycle and position in the space among others. Simulationsare carried out for population properties (global properties), as well as for those properties that pertain toindividual yeast cells (microscopic properties). The results of the simulations are in good qualitativeagreement with established experimental trends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Our aim in this study was to determine the concentration of salivary glucose in healthy individuals and to compare it with the capillary glycemia. Study design: Samples of unstimulated whole saliva were collected from 63 non-diabetic patients. The concentration of salivary glucose and capillary blood was measured in all of the patients. The salivary glucose was determined by enzymatic method and spectrophotometry. The data was then analyzed using the Spearman correlation test, considering values of p<0.05 to be significant. Results: The whole sample consisted of 47.6% males and 52.4% women, with an average age of 37.5±15.7 years old. The average rates of unstimulated salivary flow were 0.41±0.21 ml/min among males and 0.31±0.15 ml/min among females. No significant difference was found based on these results (p=0.078). The average blood glucose among the males studied was 100.05±13.51 mg/dL, and among females, it was 99.5±13.9 mg/dL. The average salivary glucose for the whole sample was 5.97±1.87 mg/dL, with 5.91±2.19 mg/dL among males and 5.97±1.56 mg/dL among females, respectively, without presenting any significant differences (p=0.908). The concentration of salivary glucose did not present any statistically significant correlation with the capillary glycemia (p=0.732). Conclusions: The results suggest that the concentration of salivary glucose is not dependent on capillary glycemia and that the concentration of salivary glucose does not present significant differences between the measurements for males and females.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background While growing in natural environments yeasts can be affected by osmotic stress provoked by high glucose concentrations. The response to this adverse condition requires the HOG pathway and involves transcriptional and posttranscriptional mechanisms initiated by the phosphorylation of this protein, its translocation to the nucleus and activation of transcription factors. One of the genes induced to respond to this injury is YHR087W. It encodes for a protein structurally similar to the N-terminal region of human SBDS whose expression is also induced under other forms of stress and whose deletion determines growth defects at high glucose concentrations. Results In this work we show that YHR087W expression is regulated by several transcription factors depending on the particular stress condition, and Hot1p is particularly relevant for the induction at high glucose concentrations. In this situation, Hot1p, together to Sko1p, binds to YHR087W promoter in a Hog1p-dependent manner. Several evidences obtained indicate Yhr087wp"s role in translation. Firstly, and according to TAP purification experiments, it interacts with proteins involved in translation initiation. Besides, its deletion mutant shows growth defects in the presence of translation inhibitors and displays a slightly slower translation recovery after applying high glucose stress than the wild type strain. Analyses of the association of mRNAs to polysome fractions reveals a lower translation in the mutant strain of the mRNAs corresponding to genes GPD1, HSP78 and HSP104. Conclusions The data demonstrates that expression of Yhr087wp under high glucose concentration is controlled by Hot1p and Sko1p transcription factors, which bind to its promoter. Yhr087wp has a role in translation, maybe in the control of the synthesis of several stress response proteins, which could explain the lower levels of some of these proteins found in previous proteomic analyses and the growth defects of the deletion strain. Keywords: Saccharomyces cerevisiae; High glucose osmotic stress; Gene YHR087W; Gene expression; Translation; Hot1p; Hog1p; Polysomes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vertebrates, early brain development takes place at the expanded anterior end of the neural tube, which is filled with embryonic cerebrospinal fluid (E-CSF). We have recently identified a transient blood-CSF barrier that forms between embryonic days E3 and E4 in chick embryos and that is responsible for the transport of proteins and control of E-CSF homeostasis, including osmolarity. Here we examined the presence of glucose transporter GLUT-1 as well the presence of caveolae-structural protein Caveolin1 (CAV-1) in the embryonic blood-CSF barrier which may be involved in the transport of glucose and of proteins, water and ions respectively across the neuroectoderm. In this paper we demonstrate the presence of GLUT-1 and CAV-1 in endothelial cells of blood vessels as well as in adjacent neuroectodermal cells, located in the embryonic blood-CSF barrier. In blood vessels, these proteins were detected as early as E4 in chick embryos and E12.7 in rat embryos, i.e. the point at which the embryonic blood-CSF barrier acquires this function. In the neuroectoderm of the embryonic blood-CSF barrier, GLUT-1 was also detected at E4 and E12.7 respectively, and CAV-1 was detected shortly thereafter in both experimental models. These experiments contribute to delineating the extent to which the blood-CSF embryonic barrier controls E-CSF composition and homeostasis during early stages of brain development in avians and mammals. Our results suggest the regulation of glucose transport to the E-CSF by means of GLUT-1 and also suggest a mechanism by which proteins are transported via transcellular routes across the neuroectoderm, thus reinforcing the crucial role of E-CSF in brain development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent reports point out the importance of the complex GK-GKRP in controlling glucose and lipid homeostasis. Several GK mutations affect GKRP binding, resulting in permanent activation of the enzyme. We hypothesize that hepatic overexpression of a mutated form of GK, GKA456V, described in a patient with persistent hyperinsulinemic hypoglycemia of infancy (PHHI) and could provide a model to study the consequences of GK-GKRP deregulation in vivo. GKA456V was overexpressed in the liver of streptozotocin diabetic mice. Metabolite profiling in serum and liver extracts, together with changes in key components of glucose and lipid homeostasis, were analyzed and compared to GK wild-type transfected livers. Cell compartmentalization of the mutant but not the wild-type GK was clearly affected in vivo, demonstrating impaired GKRP regulation. GKA456V overexpression markedly reduced blood glucose in the absence of dyslipidemia, in contrast to wild-type GK-overexpressing mice. Evidence in glucose utilization did not correlate with increased glycogen nor lactate levels in the liver. PEPCK mRNA was not affected, whereas the mRNA for the catalytic subunit of glucose-6-phosphatase was upregulated ~4 folds in the liver of GKA456V-treated animals, suggesting that glucose cycling was stimulated. Our results provide new insights into the complex GK regulatory network and validate liver-specific GK activation as a strategy for diabetes therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Lipoprotein lipase (LPL) is anchored at the vascular endothelium through interaction with heparan sulfate. It is not known how this enzyme is turned over but it has been suggested that it is slowly released into blood and then taken up and degraded in the liver. Heparin releases the enzyme into the circulating blood. Several lines of evidence indicate that this leads to accelerated flux of LPL to the liver and a temporary depletion of the enzyme in peripheral tissues. RESULTS: Rat livers were found to contain substantial amounts of LPL, most of which was catalytically inactive. After injection of heparin, LPL mass in liver increased for at least an hour. LPL activity also increased, but not in proportion to mass, indicating that the lipase soon lost its activity after being bound/taken up in the liver. To further study the uptake, bovine LPL was labeled with 125I and injected. Already two min after injection about 33 % of the injected lipase was in the liver where it initially located along sinusoids. With time the immunostaining shifted to the hepatocytes, became granular and then faded, indicating internalization and degradation. When heparin was injected before the lipase, the initial immunostaining along sinusoids was weaker, whereas staining over Kupffer cells was enhanced. When the lipase was converted to inactive before injection, the fraction taken up in the liver increased and the lipase located mainly to the Kupffer cells. CONCLUSIONS: This study shows that there are heparin-insensitive binding sites for LPL on both hepatocytes and Kupffer cells. The latter may be the same sites as those that mediate uptake of inactive LPL. The results support the hypothesis that turnover of endothelial LPL occurs in part by transport to and degradation in the liver, and that this transport is accelerated after injection of heparin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We previously reported that A. hydrophila GalU mutants were still able to produce UDP-glucose introduced as a glucose residue in their lipopolysaccharide core. In this study, we found the unique origin of this UDP-glucose from a branched α-glucan surface polysaccharide. This glucan, surface attached through the O-antigen ligase (WaaL), is common to the mesophilic Aeromonas strains tested. The Aeromonas glucan is produced by the action of the glycogen synthase (GlgA) and the UDP-Glc pyrophosphorylase (GlgC), the latter wrongly indicated as an ADP-Glc pyrophosphorylase in the Aeromonas genomes available. The Aeromonas glycogen synthase is able to react with UDP or ADP-glucose, which is not the case of E. coli glycogen synthase only reacting with ADP-glucose. The Aeromonas surface glucan has a role enhancing biofilm formation. Finally, for the first time to our knowledge, a clear preference on behalf of bacterial survival and pathogenesis is observed when choosing to produce one or other surface saccharide molecules to produce (lipopolysaccharide core or glucan).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Little is known about the types of ‘sit less, move more’ strategies that appeal to office employees, or what factors influence their use. This study assessed the uptake of strategies in Spanish university office employees engaged in an intervention, and those factors that enabled or limited strategy uptake. Methods The study used a mixed method design. Semi-structured interviews were conducted with academics and administrators (n = 12; 44 ± 12 mean SD age; 6 women) at three points across the five-month intervention, and data used to identify factors that influenced the uptake of strategies. Employees who finished the intervention then completed a survey rating (n = 88; 42 ± 8 mean SD age; 51 women) the extent to which strategies were used [never (1) to usually (4)]; additional survey items (generated from interviewee data) rated the impact of factors that enabled or limited strategy uptake [no influence (1) to very strong influence (4)]. Survey score distributions and averages were calculated and findings triangulated with interview data. Results Relative to baseline, 67% of the sample increased step counts post intervention (n = 59); 60% decreased occupational sitting (n = 53). ‘Active work tasks’ and ‘increases in walking intensity’ were the strategies most frequently used by employees (89% and 94% sometimes or usually utilised these strategies); ‘walk-talk meetings’ and ‘lunchtime walking groups’ were the least used (80% and 96% hardly ever or never utilised these strategies). ‘Sitting time and step count logging’ was the most important enabler of behaviour change (mean survey score of 3.1 ± 0.8); interviewees highlighted the motivational value of being able to view logged data through visual graphics in a dedicated website, and gain feedback on progress against set goals. ‘Screen based work’ (mean survey score of 3.2 ± 0.8) was the most significant barrier limiting the uptake of strategies. Inherent time pressures and cultural norms that dictated sedentary work practices limited the adoption of ‘walk-talk meetings’ and ‘lunch time walking groups’. Conclusions The findings provide practical insights into which strategies and influences practitioners need to target to maximise the impact of ‘sit less, move more’ occupational intervention strategies.