30 resultados para Gibbs free energy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider damage spreading transitions in the framework of mode-coupling theory. This theory describes relaxation processes in glasses in the mean-field approximation which are known to be characterized by the presence of an exponentially large number of metastable states. For systems evolving under identical but arbitrarily correlated noises, we demonstrate that there exists a critical temperature T0 which separates two different dynamical regimes depending on whether damage spreads or not in the asymptotic long-time limit. This transition exists for generic noise correlations such that the zero damage solution is stable at high temperatures, being minimal for maximal noise correlations. Although this dynamical transition depends on the type of noise correlations, we show that the asymptotic damage has the good properties of a dynamical order parameter, such as (i) independence of the initial damage; (ii) independence of the class of initial condition; and (iii) stability of the transition in the presence of asymmetric interactions which violate detailed balance. For maximally correlated noises we suggest that damage spreading occurs due to the presence of a divergent number of saddle points (as well as metastable states) in the thermodynamic limit consequence of the ruggedness of the free-energy landscape which characterizes the glassy state. These results are then compared to extensive numerical simulations of a mean-field glass model (the Bernasconi model) with Monte Carlo heat-bath dynamics. The freedom of choosing arbitrary noise correlations for Langevin dynamics makes damage spreading an interesting tool to probe the ruggedness of the configurational landscape.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the static properties of the Little model with asymmetric couplings. We show that the thermodynamics of this model coincides with that of the Sherrington-Kirkpatrick model, and we compute the main finite-size corrections to the difference of the free energy between these two models and to some clarifying order parameters. Our results agree with numerical simulations. Numerical results are presented for the symmetric Little model, which show that the same conclusions are also valid in this case.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The protein shells, or capsids, of nearly all spherelike viruses adopt icosahedral symmetry. In the present Letter, we propose a statistical thermodynamic model for viral self-assembly. We find that icosahedral symmetry is not expected for viral capsids constructed from structurally identical protein subunits and that this symmetry requires (at least) two internal switching configurations of the protein. Our results indicate that icosahedral symmetry is not a generic consequence of free energy minimization but requires optimization of internal structural parameters of the capsid proteins

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a new phenomenological approach to nucleation, based on the combination of the extended modified liquid drop model and dynamical nucleation theory. The new model proposes a new cluster definition, which properly includes the effect of fluctuations, and it is consistent both thermodynamically and kinetically. The model is able to predict successfully the free energy of formation of the critical nucleus, using only macroscopic thermodynamic properties. It also accounts for the spinodal and provides excellent agreement with the result of recent simulations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an approach based on the saddle-point approximation to study the equilibrium interactions between small molecules and macromolecules with a large number of sites. For this case, the application of the Darwin–Fowler method results in very simple expressions for the stoichiometric equilibrium constants and their corresponding free energies in terms of integrals of the binding curve plus a correction term which depends on the first derivatives of the binding curve in the points corresponding to an integer value of the mean occupation number. These expressions are simplified when the number of sites tends to infinity, providing an interpretation of the binding curve in terms of the stoichiometric stability constants. The formalism presented is applied to some simple complexation models, obtaining good values for the free energies involved. When heterogeneous complexation is assumed, simple expressions are obtained to relate the macroscopic description of the binding, given by the stoichiomeric constants, with the microscopic description in terms of the intrinsic stability constants or the affinity spectrum. © 1999 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A thermodynamically consistent damage model for the simulation of progressive delamination under variable mode ratio is presented. The model is formulated in the context of the Damage Mechanics. The constitutive equation that results from the definition of the free energy as a function of a damage variable is used to model the initiation and propagation of delamination. A new delamination initiation criterion is developed to assure that the formulation can account for changes in the loading mode in a thermodynamically consistent way. The formulation proposed accounts for crack closure effets avoiding interfacial penetration of two adjacent layers aftercomplete decohesion. The model is implemented in a finite element formulation. The numerical predictions given by the model are compared with experimental results

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study I try to explain the systemic problem of the low economic competitiveness of nuclear energy for the production of electricity by carrying out a biophysical analysis of its production process. Given the fact that neither econometric approaches nor onedimensional methods of energy analyses are effective, I introduce the concept of biophysical explanation as a quantitative analysis capable of handling the inherent ambiguity associated with the concept of energy. In particular, the quantities of energy, considered as relevant for the assessment, can only be measured and aggregated after having agreed on a pre-analytical definition of a grammar characterizing a given set of finite transformations. Using this grammar it becomes possible to provide a biophysical explanation for the low economic competitiveness of nuclear energy in the production of electricity. When comparing the various unit operations of the process of production of electricity with nuclear energy to the analogous unit operations of the process of production of fossil energy, we see that the various phases of the process are the same. The only difference is related to characteristics of the process associated with the generation of heat which are completely different in the two systems. Since the cost of production of fossil energy provides the base line of economic competitiveness of electricity, the (lack of) economic competitiveness of the production of electricity from nuclear energy can be studied, by comparing the biophysical costs associated with the different unit operations taking place in nuclear and fossil power plants when generating process heat or net electricity. In particular, the analysis focuses on fossil-fuel requirements and labor requirements for those phases that both nuclear plants and fossil energy plants have in common: (i) mining; (ii) refining/enriching; (iii) generating heat/electricity; (iv) handling the pollution/radioactive wastes. By adopting this approach, it becomes possible to explain the systemic low economic competitiveness of nuclear energy in the production of electricity, because of: (i) its dependence on oil, limiting its possible role as a carbon-free alternative; (ii) the choices made in relation to its fuel cycle, especially whether it includes reprocessing operations or not; (iii) the unavoidable uncertainty in the definition of the characteristics of its process; (iv) its large inertia (lack of flexibility) due to issues of time scale; and (v) its low power level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present paper we discuss and compare two different energy decomposition schemes: Mayer's Hartree-Fock energy decomposition into diatomic and monoatomic contributions [Chem. Phys. Lett. 382, 265 (2003)], and the Ziegler-Rauk dissociation energy decomposition [Inorg. Chem. 18, 1558 (1979)]. The Ziegler-Rauk scheme is based on a separation of a molecule into fragments, while Mayer's scheme can be used in the cases where a fragmentation of the system in clearly separable parts is not possible. In the Mayer scheme, the density of a free atom is deformed to give the one-atom Mulliken density that subsequently interacts to give rise to the diatomic interaction energy. We give a detailed analysis of the diatomic energy contributions in the Mayer scheme and a close look onto the one-atom Mulliken densities. The Mulliken density ρA has a single large maximum around the nuclear position of the atom A, but exhibits slightly negative values in the vicinity of neighboring atoms. The main connecting point between both analysis schemes is the electrostatic energy. Both decomposition schemes utilize the same electrostatic energy expression, but differ in how fragment densities are defined. In the Mayer scheme, the electrostatic component originates from the interaction of the Mulliken densities, while in the Ziegler-Rauk scheme, the undisturbed fragment densities interact. The values of the electrostatic energy resulting from the two schemes differ significantly but typically have the same order of magnitude. Both methods are useful and complementary since Mayer's decomposition focuses on the energy of the finally formed molecule, whereas the Ziegler-Rauk scheme describes the bond formation starting from undeformed fragment densities

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new registration algorithm, called Temporal Di eomorphic Free Form Deformation (TDFFD), and its application to motion and strain quanti cation from a sequence of 3D ultrasound (US) images. The originality of our approach resides in enforcing time consistency by representing the 4D velocity eld as the sum of continuous spatiotemporal B-Spline kernels. The spatiotemporal displacement eld is then recovered through forward Eulerian integration of the non-stationary velocity eld. The strain tensor iscomputed locally using the spatial derivatives of the reconstructed displacement eld. The energy functional considered in this paper weighs two terms: the image similarity and a regularization term. The image similarity metric is the sum of squared di erences between the intensities of each frame and a reference one. Any frame in the sequence can be chosen as reference. The regularization term is based on theincompressibility of myocardial tissue. TDFFD was compared to pairwise 3D FFD and 3D+t FFD, bothon displacement and velocity elds, on a set of synthetic 3D US images with di erent noise levels. TDFFDshowed increased robustness to noise compared to these two state-of-the-art algorithms. TDFFD also proved to be more resistant to a reduced temporal resolution when decimating this synthetic sequence. Finally, this synthetic dataset was used to determine optimal settings of the TDFFD algorithm. Subsequently, TDFFDwas applied to a database of cardiac 3D US images of the left ventricle acquired from 9 healthy volunteers and 13 patients treated by Cardiac Resynchronization Therapy (CRT). On healthy cases, uniform strain patterns were observed over all myocardial segments, as physiologically expected. On all CRT patients, theimprovement in synchrony of regional longitudinal strain correlated with CRT clinical outcome as quanti ed by the reduction of end-systolic left ventricular volume at follow-up (6 and 12 months), showing the potential of the proposed algorithm for the assessment of CRT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A laser-based technique for printing transparent and weakly absorbing liquids is developed. Its principle of operation relies in the tight focusing of short laser pulses inside the liquid and close to its free surface, in such a way that the laser radiation is absorbed in a tiny volume around the beam waist, with practically no absorption in any other location along the beam path. If the absorbed energy overcomes the optical breakdown threshold, a cavitation bubble is generated, and its expansion results in the propulsion of a small fraction of liquid which can be collected on a substrate, leading to the printing of a microdroplet for each laser pulse. The technique does not require the preparation of the liquid in thin film form, and its forward mode of operation imposes no restriction concerning the optical properties of the substrate. These characteristics make it well suited for printing a wide variety of materials of interest in diverse applications. We demonstrate that the film-free laser forward printing technique is capable of printing microdroplets with good resolution, reproducibility and control, and analyze the influence of the main process parameter, laser pulse energy. The mechanisms of liquid printing are also investigated: time-resolved imaging provides a clear picture of the dynamics of liquid transfer which allows understanding the main features observed in the printed droplets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that the solution published in the paper by Senovilla [Phys. Rev. Lett. 64, 2219 (1990)] is geodesically complete and singularity-free. We also prove that the solution satisfies the stronger energy and causality conditions, such as global hyperbolicity, the strong energy condition, causal symmetry, and causal stability. A detailed discussion about which assumptions in the singularity theorems are not satisfied is performed, and we show explicitly that the solution is in accordance with those theorems. A brief discussion of the results is given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rats chronically cannulated in the carotid artery and the muscular branch of the femoral vein were subjected to a cold (4 °C) environment for up to 2 h. The changes in blood flow (measured with 46Sc microspheres) and arterio-venous differences in the concentrations of glucose, lactate, triacylglycerols and amino acids allowed the estimation of substrate (and energy) balances across the hindleg. Mean glucose uptake was 0.28mmol min21, mean lactate release was 0.33mmol min21 and the free fatty acid basal release of 0.31mmol min21 was practically zero upon exposure to the cold; the initial uptake of triacylglycerols gave place to a massive release following exposure. The measurement of PO·, PCO· and pH also allowed the estimation of oxygen, CO2 and bicarbonate balances and respiratory quotient changes across the hindleg. The contribution of amino acids to the energy balance of the hindleg was assumed to be low. These data were used to determine the sources of energy used to maintain muscle shivering with time. Three distinct phases were observed in hindleg substrate utilization. (1) The onset of shivering, with the use of glucose/glycogen and an increase in lactate efflux. Lipid oxidation was practically zero (respiratory quotient near 1), but the uptake of triacylglycerols from the blood remained unchanged. (2) A substrate-energy shift, with drastically decreased use of glucose/glycogen, and of lactate efflux; utilization of triacylglycerol as practically the sole source of energy (respiratory quotient approximately 0.7); decreasing uptake of triacylglycerol and increased tissue lipid mobilization. (3) The onset of a new heat-homeostasis setting for prolonged cold-exposure, with maintenance of muscle energy and heat production based on triacylglycerol utilization and efflux from the hindleg (muscle plus skin and subcutaneous adipose masses) contributing energy to help sustain heat production by the core organs and surrounding brown adipose tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the nucleation and the physical properties of a -1/2 wedge disclination line near the free surface of a confined nematic liquid crystal. The position of the disclination line has been related to the material parameters (elastic constants, anchoring energy, and favored anchoring angle of the molecules at the free surface). The use of a planar model for the structure of the director field (whose predictions have been contrasted to those of a fully three-dimensional model) has allowed us to relate the experimentally observed position of the disclination line to the relevant properties of the liquid crystals. In particular, we have been able to observe the collapse of the disclination line due to a temperature-induced anchoring-angle transition, which has allowed us to rule out the presence of a real disclination line near the nematic/isotropic front in directional growth experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied the variations caused by stress in lipoprotein lipase (LPL) activity, LPL-mRNA, and local blood flow in LPL-rich tissues in the rat. Stress was produced by body immobilization (Immo): the rat's limbs were taped to metal mounts, and its head was placed in a plastic tube. Chronic stress (2 h daily of Immo) decreased total LPL activity in mesenteric and epididymal white adipose tissue (WAT) and was accompanied by a weight reduction of these tissues. In limb muscle, heart, and adrenals, total LPL activity and mRNA levels increased, and, in plasma, LPL activity and mass also increased. Acute stress (30-min Immo) caused a decrease in total LPL activity only in retroperitoneal WAT and an increase in preheparin plasma active LPL, but the overall weight of this tissue did not vary significantly. We propose an early release of the enzyme from this tissue into the bloodstream by some unknown extracellular pathways or other local mechanisms. These changes in this key energy-regulating enzyme are probably induced by catecholamines. They modify the flow of energy substrates between tissues, switching the WAT from importer to exporter of free fatty acids and favoring the uptake by muscle of circulating triacylglycerides for energy supply. Moreover, we found that acute stress almost doubled blood flow in all WAT studied, favoring the export of free fatty acids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A thorough critical analysis of the theoretical relationships between the bond-angle dispersion in a-Si, Δθ, and the width of the transverse optical Raman peak, Γ, is presented. It is shown that the discrepancies between them are drastically reduced when unified definitions for Δθ and Γ are used. This reduced dispersion in the predicted values of Δθ together with the broad agreement with the scarce direct determinations of Δθ is then used to analyze the strain energy in partially relaxed pure a-Si. It is concluded that defect annihilation does not contribute appreciably to the reduction of the a-Si energy during structural relaxation. In contrast, it can account for half of the crystallization energy, which can be as low as 7 kJ/mol in defect-free a-Si