21 resultados para Geology--South Africa--Maps
Resumo:
Streams and rivers in mediterranean-climate regions (med-rivers in med-regions) are ecologically unique, with flow regimes reflecting precipitation patterns. Although timing of drying and flooding is predictable, seasonal and annual intensity of these events is not. Sequential flooding and drying, coupled with anthropogenic influences make these med-rivers among the most stressed riverine habitat worldwide. Med-rivers are hotspots for biodiversity in all med-regions. Species in med-rivers require different, often opposing adaptive mechanisms to survive drought and flood conditions or recover from them. Thus, metacommunities undergo seasonal differences, reflecting cycles of river fragmentation and connectivity, which also affect ecosystem functioning. River conservation and management is challenging, and trade-offs between environmental and human uses are complex, especially under future climate change scenarios. This overview of a Special Issue on med-rivers synthesizes information presented in 21 articles covering the five med-regions worldwide: Mediterranean Basin, coastal California, central Chile, Cape region of South Africa, and southwest and southern Australia. Research programs to increase basic knowledge in less-developed med-regions should be prioritized to achieve increased abilities to better manage med-rivers.
Resumo:
Previous genetic studies have demonstrated that natal homing shapes the stock structure of marine turtle nesting populations. However, widespread sharing of common haplotypes based on short segments of the mitochondrial control region often limits resolution of the demographic connectivity of populations. Recent studies employing longer control region sequences to resolve haplotype sharing have focused on regional assessments of genetic structure and phylogeography. Here we synthesize available control region sequences for loggerhead turtles from the Mediterranean Sea, Atlantic, and western Indian Ocean basins. These data represent six of the nine globally significant regional management units (RMUs) for the species and include novel sequence data from Brazil, Cape Verde, South Africa and Oman. Genetic tests of differentiation among 42 rookeries represented by short sequences (380 bp haplotypes from 3,486 samples) and 40 rookeries represented by long sequences (~800 bp haplotypes from 3,434 samples) supported the distinction of the six RMUs analyzed as well as recognition of at least 18 demographically independent management units (MUs) with respect to female natal homing. A total of 59 haplotypes were resolved. These haplotypes belonged to two highly divergent global lineages, with haplogroup I represented primarily by CC-A1, CC-A4, and CC-A11 variants and haplogroup II represented by CC-A2 and derived variants. Geographic distribution patterns of haplogroup II haplotypes and the nested position of CC-A11.6 from Oman among the Atlantic haplotypes invoke recent colonization of the Indian Ocean from the Atlantic for both global lineages. The haplotypes we confirmed for western Indian Ocean RMUs allow reinterpretation of previous mixed stock analysis and further suggest that contemporary migratory connectivity between the Indian and Atlantic Oceans occurs on a broader scale than previously hypothesized. This study represents a valuable model for conducting comprehensive international cooperative data management and research in marine ecology.
Resumo:
This paper describes the presence of the nearctic water boatman Trichocorixa verticalis verticalis in southern Portugal. This species has been cited recently for the first time in Europe from individuals captured in southern Spain. This species, native to Atlantic coast of America, has also been cited from New Caledonia and South Africa, and has been found in the open sea. Two kinds of introduction are reported for this species: involuntary introduction with exotic fish, and passive dispersion through marine currents and severe storms. The possibility of this kind of introduction in Europe is discussed
Resumo:
BACKGROUND: The association between obesity and back pain has mainly been studied in high-income settings with inconclusive results, and data from older populations and developing countries are scarce. The aim of this study was to assess this association in nine countries in Asia, Africa, Europe, and Latin America among older adults using nationally-representative data. METHODS: Data on 42116 individuals ≥50 years who participated in the Collaborative Research on Ageing in Europe (COURAGE) study conducted in Finland, Poland, and Spain in 2011-2012, and the World Health Organization's Study on Global Ageing and Adult Health (SAGE) conducted in China, Ghana, India, Mexico, Russia, and South Africa in 2007-2010 were analysed. Information on measured height and weight available in the two datasets was used to calculate Body Mass Index (BMI). Self-reported back pain occurring in the past 30 days was the outcome. Multivariable logistic regression analysis was used to assess the association between BMI and back pain. RESULTS: The prevalence of back pain ranged from 21.5% (China) to 57.5% (Poland). In the multivariable analysis, compared to BMI 18.5-24.9 kg/m(2), significantly higher odds for back pain were observed for BMI ≥35 kg/m(2) in Finland (OR 3.33), Russia (OR 2.20), Poland (OR 2.03), Spain (OR 1.56), and South Africa (OR 1.48); BMI 30.0-34.0 kg/m(2) in Russia (OR 2.76), South Africa (OR 1.51), and Poland (OR 1.47); and BMI 25.0-29.9 kg/m(2) in Russia (OR 1.51) and Poland (OR 1.40). No significant associations were found in the other countries. CONCLUSIONS: The strength of the association between obesity and back pain may vary by country. Future studies are needed to determine the factors contributing to differences in the associations observed.
Resumo:
Pyrrolizidine alkaloids (PAs) are N-based plant secondary metabolites that function as chemical defenses against vertebrate and invertebrate herbivores. PAs can be highly variable at intraspecific level, both in their absolute and relative concentrations. Changes in the chemical composition of exotic plants when they invade a new environment have been poorly explored. Here we studied the biogeographical variation on PAs in Senecio pterophorus (Asteraceae) in the native region in Eastern South Africa, an expanded region in Western South Africa, and two introduced regions in Australia and Europe. PAs in S. pterophorus were represented by the highly toxic 1,2-unsaturated PAs and the less toxic 1,2-saturated PAs. Our results show a change in the plant chemical composition after invasion. Total PAs concentrations were highest in Australia compared to any other region. Plants from Europe contained the highest relative concentrations of 1,2-saturated PAs. The positive correlation between the chemical and the genetic distances estimated between populations suggests that the chemical profiles in the non-native regions were related to the plant dispersal routes. The decrease in the chemical diversity and the change in the absolute PAs concentrations in S. pterophorus after invasion may have consequences in the interactions between plants and herbivores in the novel habitats.
Resumo:
Successful plant invaders may have specific morphological and physiological traits that promote invasion in a new habitat. The Evolution of Increased Competitive Ability (EICA) hypothesis predicts that plants released from natural enemies in the introduced habitats are more competitive and perform better than plants from the native populations. An increased phenotypic plasticity may also favour invasion because it allows plants to function under a wider range of environments. In this study we used Senecio pterophorus (Asteraceae) to test whether introduced plant populations are 1)more competitive and 2) more plastic compared with the native populations. We conducted a common garden experiment using plants from the native range (South Africa, Eastern Cape), an expanded range (South Africa, Western Cape) and two introduced ranges (Australia and Europe) under different conditions of water availability. Contrary to the EICA and the increased plasticity hypotheses, plants from the invasive and expanded populations grew less and responded less to watering than those from their native range. These results may be caused by a depleted competition as well as the presence of genetic bottlenecks in the newly invaded areas.