75 resultados para Geo-statistical model


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this article we present a hybrid approach for automatic summarization of Spanish medical texts. There are a lot of systems for automatic summarization using statistics or linguistics, but only a few of them combining both techniques. Our idea is that to reach a good summary we need to use linguistic aspects of texts, but as well we should benefit of the advantages of statistical techniques. We have integrated the Cortex (Vector Space Model) and Enertex (statistical physics) systems coupled with the Yate term extractor, and the Disicosum system (linguistics). We have compared these systems and afterwards we have integrated them in a hybrid approach. Finally, we have applied this hybrid system over a corpora of medical articles and we have evaluated their performances obtaining good results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the scope of the European project Hydroptimet, INTERREG IIIB-MEDOCC programme, limited area model (LAM) intercomparison of intense events that produced many damages to people and territory is performed. As the comparison is limited to single case studies, the work is not meant to provide a measure of the different models' skill, but to identify the key model factors useful to give a good forecast on such a kind of meteorological phenomena. This work focuses on the Spanish flash-flood event, also known as "Montserrat-2000" event. The study is performed using forecast data from seven operational LAMs, placed at partners' disposal via the Hydroptimet ftp site, and observed data from Catalonia rain gauge network. To improve the event analysis, satellite rainfall estimates have been also considered. For statistical evaluation of quantitative precipitation forecasts (QPFs), several non-parametric skill scores based on contingency tables have been used. Furthermore, for each model run it has been possible to identify Catalonia regions affected by misses and false alarms using contingency table elements. Moreover, the standard "eyeball" analysis of forecast and observed precipitation fields has been supported by the use of a state-of-the-art diagnostic method, the contiguous rain area (CRA) analysis. This method allows to quantify the spatial shift forecast error and to identify the error sources that affected each model forecasts. High-resolution modelling and domain size seem to have a key role for providing a skillful forecast. Further work is needed to support this statement, including verification using a wider observational data set.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ever since the appearance of the ARCH model [Engle(1982a)], an impressive array of variance specifications belonging to the same class of models has emerged [i.e. Bollerslev's (1986) GARCH; Nelson's (1990) EGARCH]. This recent domain has achieved very successful developments. Nevertheless, several empirical studies seem to show that the performance of such models is not always appropriate [Boulier(1992)]. In this paper we propose a new specification: the Quadratic Moving Average Conditional heteroskedasticity model. Its statistical properties, such as the kurtosis and the symmetry, as well as two estimators (Method of Moments and Maximum Likelihood) are studied. Two statistical tests are presented, the first one tests for homoskedasticity and the second one, discriminates between ARCH and QMACH specification. A Monte Carlo study is presented in order to illustrate some of the theoretical results. An empirical study is undertaken for the DM-US exchange rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the main implications of the efficient market hypothesis (EMH) is that expected future returns on financial assets are not predictable if investors are risk neutral. In this paper we argue that financial time series offer more information than that this hypothesis seems to supply. In particular we postulate that runs of very large returns can be predictable for small time periods. In order to prove this we propose a TAR(3,1)-GARCH(1,1) model that is able to describe two different types of extreme events: a first type generated by large uncertainty regimes where runs of extremes are not predictable and a second type where extremes come from isolated dread/joy events. This model is new in the literature in nonlinear processes. Its novelty resides on two features of the model that make it different from previous TAR methodologies. The regimes are motivated by the occurrence of extreme values and the threshold variable is defined by the shock affecting the process in the preceding period. In this way this model is able to uncover dependence and clustering of extremes in high as well as in low volatility periods. This model is tested with data from General Motors stocks prices corresponding to two crises that had a substantial impact in financial markets worldwide; the Black Monday of October 1987 and September 11th, 2001. By analyzing the periods around these crises we find evidence of statistical significance of our model and thereby of predictability of extremes for September 11th but not for Black Monday. These findings support the hypotheses of a big negative event producing runs of negative returns in the first case, and of the burst of a worldwide stock market bubble in the second example. JEL classification: C12; C15; C22; C51 Keywords and Phrases: asymmetries, crises, extreme values, hypothesis testing, leverage effect, nonlinearities, threshold models

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We explore in depth the validity of a recently proposed scaling law for earthquake inter-event time distributions in the case of the Southern California, using the waveform cross-correlation catalog of Shearer et al. Two statistical tests are used: on the one hand, the standard two-sample Kolmogorov-Smirnov test is in agreement with the scaling of the distributions. On the other hand, the one-sample Kolmogorov-Smirnov statistic complemented with Monte Carlo simulation of the inter-event times, as done by Clauset et al., supports the validity of the gamma distribution as a simple model of the scaling function appearing on the scaling law, for rescaled inter-event times above 0.01, except for the largest data set (magnitude greater than 2). A discussion of these results is provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

First: A continuous-time version of Kyle's model (Kyle 1985), known as the Back's model (Back 1992), of asset pricing with asymmetric information, is studied. A larger class of price processes and of noise traders' processes are studied. The price process, as in Kyle's model, is allowed to depend on the path of the market order. The process of the noise traders' is an inhomogeneous Lévy process. Solutions are found by the Hamilton-Jacobi-Bellman equations. With the insider being risk-neutral, the price pressure is constant, and there is no equilibirium in the presence of jumps. If the insider is risk-averse, there is no equilibirium in the presence of either jumps or drifts. Also, it is analised when the release time is unknown. A general relation is established between the problem of finding an equilibrium and of enlargement of filtrations. Random announcement time is random is also considered. In such a case the market is not fully efficient and there exists equilibrium if the sensitivity of prices with respect to the global demand is time decreasing according with the distribution of the random time. Second: Power variations. it is considered, the asymptotic behavior of the power variation of processes of the form _integral_0^t u(s-)dS(s), where S_ is an alpha-stable process with index of stability 0&alpha&2 and the integral is an Itô integral. Stable convergence of corresponding fluctuations is established. These results provide statistical tools to infer the process u from discrete observations. Third: A bond market is studied where short rates r(t) evolve as an integral of g(t-s)sigma(s) with respect to W(ds), where g and sigma are deterministic and W is the stochastic Wiener measure. Processes of this type are particular cases of ambit processes. These processes are in general not of the semimartingale kind.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Model predictiu basat en xarxes bayesianes que permet identificar els pacients amb major risc d'ingrés a un hospital segons una sèrie d'atributs de dades demogràfiques i clíniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Recent advances on high-throughput technologies have produced a vast amount of protein sequences, while the number of high-resolution structures has seen a limited increase. This has impelled the production of many strategies to built protein structures from its sequence, generating a considerable amount of alternative models. The selection of the closest model to the native conformation has thus become crucial for structure prediction. Several methods have been developed to score protein models by energies, knowledge-based potentials and combination of both.Results: Here, we present and demonstrate a theory to split the knowledge-based potentials in scoring terms biologically meaningful and to combine them in new scores to predict near-native structures. Our strategy allows circumventing the problem of defining the reference state. In this approach we give the proof for a simple and linear application that can be further improved by optimizing the combination of Zscores. Using the simplest composite score () we obtained predictions similar to state-of-the-art methods. Besides, our approach has the advantage of identifying the most relevant terms involved in the stability of the protein structure. Finally, we also use the composite Zscores to assess the conformation of models and to detect local errors.Conclusion: We have introduced a method to split knowledge-based potentials and to solve the problem of defining a reference state. The new scores have detected near-native structures as accurately as state-of-art methods and have been successful to identify wrongly modeled regions of many near-native conformations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The well-known lack of power of unit root tests has often been attributed to the shortlength of macroeconomic variables and also to DGP s that depart from the I(1)-I(0)alternatives. This paper shows that by using long spans of annual real GNP and GNPper capita (133 years) high power can be achieved, leading to the rejection of both theunit root and the trend-stationary hypothesis. This suggests that possibly neither modelprovides a good characterization of these data. Next, more flexible representations areconsidered, namely, processes containing structural breaks (SB) and fractional ordersof integration (FI). Economic justification for the presence of these features in GNP isprovided. It is shown that the latter models (FI and SB) are in general preferred to theARIMA (I(1) or I(0)) ones. As a novelty in this literature, new techniques are appliedto discriminate between FI and SB models. It turns out that the FI specification ispreferred, implying that GNP and GNP per capita are non-stationary, highly persistentbut mean-reverting series. Finally, it is shown that the results are robust when breaksin the deterministic component are allowed for in the FI model. Some macroeconomicimplications of these findings are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents and estimates a dynamic choice model in the attribute space considering rational consumers. In light of the evidence of several state-dependence patterns, the standard attribute-based model is extended by considering a general utility function where pure inertia and pure variety-seeking behaviors can be explained in the model as particular linear cases. The dynamics of the model are fully characterized by standard dynamic programming techniques. The model presents a stationary consumption pattern that can be inertial, where the consumer only buys one product, or a variety-seeking one, where the consumer shifts among varied products.We run some simulations to analyze the consumption paths out of the steady state. Underthe hybrid utility assumption, the consumer behaves inertially among the unfamiliar brandsfor several periods, eventually switching to a variety-seeking behavior when the stationary levels are approached. An empirical analysis is run using scanner databases for three different product categories: fabric softener, saltine cracker, and catsup. Non-linear specifications provide the best fit of the data, as hybrid functional forms are found in all the product categories for most attributes and segments. These results reveal the statistical superiority of the non-linear structure and confirm the gradual trend to seek variety as the level of familiarity with the purchased items increases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many dynamic revenue management models divide the sale period into a finite number of periods T and assume, invoking a fine-enough grid of time, that each period sees at most one booking request. These Poisson-type assumptions restrict the variability of the demand in the model, but researchers and practitioners were willing to overlook this for the benefit of tractability of the models. In this paper, we criticize this model from another angle. Estimating the discrete finite-period model poses problems of indeterminacy and non-robustness: Arbitrarily fixing T leads to arbitrary control values and on the other hand estimating T from data adds an additional layer of indeterminacy. To counter this, we first propose an alternate finite-population model that avoids this problem of fixing T and allows a wider range of demand distributions, while retaining the useful marginal-value properties of the finite-period model. The finite-population model still requires jointly estimating market size and the parameters of the customer purchase model without observing no-purchases. Estimation of market-size when no-purchases are unobservable has rarely been attempted in the marketing or revenue management literature. Indeed, we point out that it is akin to the classical statistical problem of estimating the parameters of a binomial distribution with unknown population size and success probability, and hence likely to be challenging. However, when the purchase probabilities are given by a functional form such as a multinomial-logit model, we propose an estimation heuristic that exploits the specification of the functional form, the variety of the offer sets in a typical RM setting, and qualitative knowledge of arrival rates. Finally we perform simulations to show that the estimator is very promising in obtaining unbiased estimates of population size and the model parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work presented evaluates the statistical characteristics of regional bias and expected error in reconstructions of real positron emission tomography (PET) data of human brain fluoro-deoxiglucose (FDG) studies carried out by the maximum likelihood estimator (MLE) method with a robust stopping rule, and compares them with the results of filtered backprojection (FBP) reconstructions and with the method of sieves. The task of evaluating radioisotope uptake in regions-of-interest (ROIs) is investigated. An assessment of bias and variance in uptake measurements is carried out with simulated data. Then, by using three different transition matrices with different degrees of accuracy and a components of variance model for statistical analysis, it is shown that the characteristics obtained from real human FDG brain data are consistent with the results of the simulation studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ground clutter caused by anomalous propagation (anaprop) can affect seriously radar rain rate estimates, particularly in fully automatic radar processing systems, and, if not filtered, can produce frequent false alarms. A statistical study of anomalous propagation detected from two operational C-band radars in the northern Italian region of Emilia Romagna is discussed, paying particular attention to its diurnal and seasonal variability. The analysis shows a high incidence of anaprop in summer, mainly in the morning and evening, due to the humid and hot summer climate of the Po Valley, particularly in the coastal zone. Thereafter, a comparison between different techniques and datasets to retrieve the vertical profile of the refractive index gradient in the boundary layer is also presented. In particular, their capability to detect anomalous propagation conditions is compared. Furthermore, beam path trajectories are simulated using a multilayer ray-tracing model and the influence of the propagation conditions on the beam trajectory and shape is examined. High resolution radiosounding data are identified as the best available dataset to reproduce accurately the local propagation conditions, while lower resolution standard TEMP data suffers from interpolation degradation and Numerical Weather Prediction model data (Lokal Model) are able to retrieve a tendency to superrefraction but not to detect ducting conditions. Observing the ray tracing of the centre, lower and upper limits of the radar antenna 3-dB half-power main beam lobe it is concluded that ducting layers produce a change in the measured volume and in the power distribution that can lead to an additional error in the reflectivity estimate and, subsequently, in the estimated rainfall rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is twofold. First, we study the determinants of economic growth among a wide set of potential variables for the Spanish provinces (NUTS3). Among others, we include various types of private, public and human capital in the group of growth factors. Also,we analyse whether Spanish provinces have converged in economic terms in recent decades. Thesecond objective is to obtain cross-section and panel data parameter estimates that are robustto model speci¯cation. For this purpose, we use a Bayesian Model Averaging (BMA) approach.Bayesian methodology constructs parameter estimates as a weighted average of linear regression estimates for every possible combination of included variables. The weight of each regression estimate is given by the posterior probability of each model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general formulation of boundary conditions for semiconductor-metal contacts follows from a phenomenological procedure sketched here. The resulting boundary conditions, which incorporate only physically well-defined parameters, are used to study the classical unipolar drift-diffusion model for the Gunn effect. The analysis of its stationary solutions reveals the presence of bistability and hysteresis for a certain range of contact parameters. Several types of Gunn effect are predicted to occur in the model, when no stable stationary solution exists, depending on the value of the parameters of the injecting contact appearing in the boundary condition. In this way, the critical role played by contacts in the Gunn effect is clearly established.