81 resultados para Gelfand-Dickey formalism
Resumo:
A generalized off-shell unitarity relation for the two-body scattering T matrix in a many-body medium at finite temperature is derived, through a consistent real-time perturbation expansion by means of Feynman diagrams. We comment on perturbation schemes at finite temperature in connection with an erroneous formulation of the Dyson equation in a paper recently published.
Resumo:
We first recall the construction of the Chow motive modelling intersection cohomology of a proper surface X and study its fundamental properties. Using Voevodsky's category of effective geometrical motives, we then study the motive of the exceptional divisor D in a non-singular blow-up of X. If all geometric irreducible components of D are of genus zero, then Voevodsky's formalism allows us to construct certain one-extensions of Chow motives, as canonical subquotients of the motive with compact support of the smooth part of X. Specializing to Hilbert-Blumenthal surfaces, we recover a motivic interpretation of a recent construction of A. Caspar.
Resumo:
Per a determinar la dinàmica espai-temporal completa d’un sistema quàntic tridimensional de N partícules cal integrar l’equació d’Schrödinger en 3N dimensions. La capacitat dels ordinadors actuals permet fer-ho com a molt en 3 dimensions. Amb l’objectiu de disminuir el temps de càlcul necessari per a integrar l’equació d’Schrödinger multidimensional, es realitzen usualment una sèrie d’aproximacions, com l’aproximació de Born–Oppenheimer o la de camp mig. En general, el preu que es paga en realitzar aquestes aproximacions és la pèrdua de les correlacions quàntiques (o entrellaçament). Per tant, és necessari desenvolupar mètodes numèrics que permetin integrar i estudiar la dinàmica de sistemes mesoscòpics (sistemes d’entre tres i unes deu partícules) i en els que es tinguin en compte, encara que sigui de forma aproximada, les correlacions quàntiques entre partícules. Recentment, en el context de la propagació d’electrons per efecte túnel en materials semiconductors, X. Oriols ha desenvolupat un nou mètode [Phys. Rev. Lett. 98, 066803 (2007)] per al tractament de les correlacions quàntiques en sistemes mesoscòpics. Aquesta nova proposta es fonamenta en la formulació de la mecànica quàntica de de Broglie– Bohm. Així, volem fer notar que l’enfoc del problema que realitza X. Oriols i que pretenem aquí seguir no es realitza a fi de comptar amb una eina interpretativa, sinó per a obtenir una eina de càlcul numèric amb la que integrar de manera més eficient l’equació d’Schrödinger corresponent a sistemes quàntics de poques partícules. En el marc del present projecte de tesi doctoral es pretén estendre els algorismes desenvolupats per X. Oriols a sistemes quàntics constituïts tant per fermions com per bosons, i aplicar aquests algorismes a diferents sistemes quàntics mesoscòpics on les correlacions quàntiques juguen un paper important. De forma específica, els problemes a estudiar són els següents: (i) Fotoionització de l’àtom d’heli i de l’àtom de liti mitjançant un làser intens. (ii) Estudi de la relació entre la formulació de X. Oriols amb la aproximació de Born–Oppenheimer. (iii) Estudi de les correlacions quàntiques en sistemes bi- i tripartits en l’espai de configuració de les partícules mitjançant la formulació de de Broglie–Bohm.
Resumo:
Projecte de recerca elaborat a partir d’una estada a la Center for European Integration de la Freie Universität Berlin, Alemania, entre 2007 i 2009. El tema central del projecte consisteix en la descripció matemàtica de processos espai-temporals mitjançant la teoria dels Continuous-Time Random Walks. L'aportació més significativa del nostre treball en aquest camp consisteix en considerar per primera vegada la interacció entre diversos processos actuant de manera acoblada, ja que fins ara els models existents es limitaven a l'estudi de processos individuals o independents. Aquesta idea fa possible, per exemple, plantejar un sistema de transport en l'espai i a la vegada un procés de reacció (una reacció química, per exemple), i estudiar estadísticament com cada un pot alterar el comportament de l'altre. Això suposa un salt qualitatiu important en la descripció de processos de reacció-dispersió, ja que els nostres models permeten incorporar patrons de dispersió i comportaments temporals (cicles de vida) força realistes en comparació amb els models convencionals. Per tal de completar aquest treball teòric ha estat necessari també desenvolupar algunes eines numèriques (models de xarxa) per facilitar la implementació dels models. En la vessant pràctica, hem aplicat aquestes idees al cas de la dinàmica entre virus i el sistema immunològic que té lloc quan es produeix una infecció a l'organisme. Diferents estudis experimentals portats a terme els últims anys mostren com la resposta immunològica dels organismes superiors presenta una dinàmica temporal força complexa (per exemple, en el cas de la resposta programada). Per aquest motiu, les nostres tècniques matemàtiques són d'especial utilitat per a l'anàlisi d'aquests sistemes. Finalment, altres possibles aplicacions dels models, com ara l'estudi d'invasions biològiques, també han estat considerades.
Constraint algorithm for k-presymplectic Hamiltonian systems. Application to singular field theories
Resumo:
The k-symplectic formulation of field theories is especially simple, since only tangent and cotangent bundles are needed in its description. Its defining elements show a close relationship with those in the symplectic formulation of mechanics. It will be shown that this relationship also stands in the presymplectic case. In a natural way,one can mimick the presymplectic constraint algorithm to obtain a constraint algorithmthat can be applied to k-presymplectic field theory, and more particularly to the Lagrangian and Hamiltonian formulations offield theories defined by a singular Lagrangian, as well as to the unified Lagrangian-Hamiltonian formalism (Skinner--Rusk formalism) for k-presymplectic field theory. Two examples of application of the algorithm are also analyzed.
Resumo:
Two common methods of accounting for electric-field-induced perturbations to molecular vibration are analyzed and compared. The first method is based on a perturbation-theoretic treatment and the second on a finite-field treatment. The relationship between the two, which is not immediately apparent, is made by developing an algebraic formalism for the latter. Some of the higher-order terms in this development are documented here for the first time. As well as considering vibrational dipole polarizabilities and hyperpolarizabilities, we also make mention of the vibrational Stark effec
Resumo:
This paper discusses the role of deterministic components in the DGP and in the auxiliary regression model which underlies the implementation of the Fractional Dickey-Fuller (FDF) test for I(1) against I(d) processes with d ∈ [0, 1). This is an important test in many economic applications because I(d) processess with d & 1 are mean-reverting although, when 0.5 ≤ d & 1,, like I(1) processes, they are nonstationary. We show how simple is the implementation of the FDF in these situations, and argue that it has better properties than LM tests. A simple testing strategy entailing only asymptotically normally distributed tests is also proposed. Finally, an empirical application is provided where the FDF test allowing for deterministic components is used to test for long-memory in the per capita GDP of several OECD countries, an issue that has important consequences to discriminate between growth theories, and on which there is some controversy.
Resumo:
This paper discusses the role of deterministic components in the DGP and in the auxiliaryregression model which underlies the implementation of the Fractional Dickey-Fuller (FDF) test for I(1) against I(d) processes with d [0, 1). This is an important test in many economic applications because I(d) processess with d < 1 are mean-reverting although, when 0.5 = d < 1, like I(1) processes, they are nonstationary. We show how simple is the implementation of the FDF in these situations, and argue that it has better properties than LM tests. A simple testing strategy entailing only asymptotically normally distributedtests is also proposed. Finally, an empirical application is provided where the FDF test allowing for deterministic components is used to test for long-memory in the per capita GDP of several OECD countries, an issue that has important consequences to discriminate between growth theories, and on which there is some controversy.
Resumo:
A general formalism on stochastic choice is presented. Tje Rationalizability and Recoverability (Identification) problems are discussed. For the identification issue parametric examples are analyzed by means of techniques of mathematical tomography (Random transforms).
Resumo:
This paper proposes a new time-domain test of a process being I(d), 0 < d = 1, under the null, against the alternative of being I(0) with deterministic components subject to structural breaks at known or unknown dates, with the goal of disentangling the existing identification issue between long-memory and structural breaks. Denoting by AB(t) the different types of structural breaks in the deterministic components of a time series considered by Perron (1989), the test statistic proposed here is based on the t-ratio (or the infimum of a sequence of t-ratios) of the estimated coefficient on yt-1 in an OLS regression of ?dyt on a simple transformation of the above-mentioned deterministic components and yt-1, possibly augmented by a suitable number of lags of ?dyt to account for serial correlation in the error terms. The case where d = 1 coincides with the Perron (1989) or the Zivot and Andrews (1992) approaches if the break date is known or unknown, respectively. The statistic is labelled as the SB-FDF (Structural Break-Fractional Dickey- Fuller) test, since it is based on the same principles as the well-known Dickey-Fuller unit root test. Both its asymptotic behavior and finite sample properties are analyzed, and two empirical applications are provided.
Resumo:
We consider a general class of non-Markovian processes defined by stochastic differential equations with Ornstein-Uhlenbeck noise. We present a general formalism to evaluate relaxation times associated with correlation functions in the steady state. This formalism is a generalization of a previous approach for Markovian processes. The theoretical results are shown to be in satisfactory agreement both with experimental data for a cubic bistable system and also with a computer simulation of the Stratonovich model. We comment on the dynamical role of the non-Markovianicity in different situations.
Resumo:
To quantify the vibrational anharmonicity of the long-wavelength acoustic modes of bcc Cu74.1Al23.1Be2.8 near its martensitic transition temperature Ms (261 K), the hydrostatic pressure derivatives (¿CIJ/¿P)P=0 of the elastic stiffness moduli have been measured. The Grüneisen parameters at 268 K (just above Ms), especially of longitudinal modes, which become smaller than those of the shear modes, are quite different from those at 295 K: the anharmonicity changes markedly in the vicinity of the transition. Similar trends are noted for Cu66.5Al12.7Zn20.8. Experimental data near Ms are used to estimate cubic invariants in the strain order parameters in a Landau formalism.
Resumo:
We have investigated edge modes of different multipolarity sustained by quantum antidots at zero magnetic field. The ground state of the antidot is described within a local-density-functional formalism. Two sum rules, which are exact within this formalism, have been derived and used to evaluate the energy of edge collective modes as a function of the surface density and the size of the antidot.
Resumo:
We show that, at high densities, fully variational solutions of solidlike types can be obtained from a density functional formalism originally designed for liquid 4He . Motivated by this finding, we propose an extension of the method that accurately describes the solid phase and the freezing transition of liquid 4He at zero temperature. The density profile of the interface between liquid and the (0001) surface of the 4He crystal is also investigated, and its surface energy evaluated. The interfacial tension is found to be in semiquantitative agreement with experiments and with other microscopic calculations. This opens the possibility to use unbiased density functional (DF) methods to study highly nonhomogeneous systems, like 4He interacting with strongly attractive impurities and/or substrates, or the nucleation of the solid phase in the metastable liquid.
Resumo:
We present a complete calculation of the structure of liquid 4He confined to a concave nanoscopic wedge, as a function of the opening angle of the walls. This is achieved within a finite-range density functional formalism. The results here presented, restricted to alkali metal substrates, illustrate the change in meniscus shape from rather broad to narrow wedges on weak and strong alkali adsorbers, and we relate this change to the wetting behavior of helium on the corresponding planar substrate. As the wedge angle is varied, we find a sequence of stable states that, in the case of cesium, undergo one filling and one emptying transition at large and small openings, respectively. A computationally unambiguous criterion to determine the contact angle of 4He on cesium is also proposed.