131 resultados para GENERALIZED PSEUDOSPECTRAL METHOD
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We describe a method for determining the minimal length of elements in the generalized Thompson's groups F(p). We compute the length of an element by constructing a tree pair diagram for the element, classifying the nodes of the tree and summing associated weights from the pairs of node classifications. We use this method to effectively find minimal length representatives of an element.
Resumo:
There is recent interest in the generalization of classical factor models in which the idiosyncratic factors are assumed to be orthogonal and there are identification restrictions on cross-sectional and time dimensions. In this study, we describe and implement a Bayesian approach to generalized factor models. A flexible framework is developed to determine the variations attributed to common and idiosyncratic factors. We also propose a unique methodology to select the (generalized) factor model that best fits a given set of data. Applying the proposed methodology to the simulated data and the foreign exchange rate data, we provide a comparative analysis between the classical and generalized factor models. We find that when there is a shift from classical to generalized, there are significant changes in the estimates of the structures of the covariance and correlation matrices while there are less dramatic changes in the estimates of the factor loadings and the variation attributed to common factors.
Resumo:
"vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Generalized multiresolution analyses are increasing sequences of subspaces of a Hilbert space H that fail to be multiresolution analyses in the sense of wavelet theory because the core subspace does not have an orthonormal basis generated by a fixed scaling function. Previous authors have studied a multiplicity function m which, loosely speaking, measures the failure of the GMRA to be an MRA. When the Hilbert space H is L2(Rn), the possible multiplicity functions have been characterized by Baggett and Merrill. Here we start with a function m satisfying a consistency condition which is known to be necessary, and build a GMRA in an abstract Hilbert space with multiplicity function m.
Resumo:
The Republic of Haiti is the prime international remittances recipient country in the Latin American and Caribbean (LAC) region relative to its gross domestic product (GDP). The downside of this observation may be that this country is also the first exporter of skilled workers in the world by population size. The present research uses a zero-altered negative binomial (with logit inflation) to model households' international migration decision process, and endogenous regressors' Amemiya Generalized Least Squares method (instrumental variable Tobit, IV-Tobit) to account for selectivity and endogeneity issues in assessing the impact of remittances on labor market outcomes. Results are in line with what has been found so far in this literature in terms of a decline of labor supply in the presence of remittances. However, the impact of international remittances does not seem to be important in determining recipient households' labor participation behavior, particularly for women.
Resumo:
Proyecto de investigación realizado a partir de una estancia en el Centro Internacional de Métodos Computacionales en Ingeniería (CIMEC), Argentina, entre febrero y abril del 2007. La simulación numérica de problemas de mezclas mediante el Particle Finite Element Method (PFEM) es el marco de estudio de una futura tesis doctoral. Éste es un método desarrollado conjuntamente por el CIMEC y el Centre Internacional de Mètodos Numèrics en l'Enginyeria (CIMNE-UPC), basado en la resolución de las ecuaciones de Navier-Stokes en formulación Lagrangiana. El mallador ha sido implementado y desarrollado por Dr. Nestor Calvo, investigador del CIMEC. El desarrollo del módulo de cálculo corresponde al trabajo de tesis de la beneficiaria. La correcta interacción entre ambas partes es fundamental para obtener resultados válidos. En esta memoria se explican los principales aspectos del mallador que fueron modificados (criterios de refinamiento geométrico) y los cambios introducidos en el módulo de cálculo (librería PETSc, algoritmo predictor-corrector) durante la estancia en el CIMEC. Por último, se muestran los resultados obtenidos en un problema de dos fluidos inmiscibles con transferencia de calor.
Resumo:
We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model.
Resumo:
A family of nonempty closed convex sets is built by using the data of the Generalized Nash equilibrium problem (GNEP). The sets are selected iteratively such that the intersection of the selected sets contains solutions of the GNEP. The algorithm introduced by Iusem-Sosa (2003) is adapted to obtain solutions of the GNEP. Finally some numerical experiments are given to illustrate the numerical behavior of the algorithm.
Resumo:
We study two cooperative solutions of a market with indivisible goods modeled as a generalized assignment game: Set-wise stability and Core. We first establish that the Set-wise stable set is contained in the Core and it contains the non-empty set of competitive equilibrium payoffs. We then state and prove three limit results for replicated markets. First, the sequence of Cores of replicated markets converges to the set of competitive equilibrium payoffs when the number of replicas tends to infinity. Second, the Set-wise stable set of a two-fold replicated market already coincides with the set of competitive equilibrium payoffs. Third, for any number of replicas there is a market with a Core payoff that is not a competitive equilibrium payoff.
Resumo:
The studies of Giacomo Becattini concerning the notion of the "Marshallian industrial district" have led a revolution in the field of economic development around the world. The paper offers an interpretation of the methodology adopted by Becattini. The roots are clearly Marshallian. Becattini proposes a return to the economy as a complex social science that operates in historical time. We adopt a Schumpeterian approach to the method in economic analysis in order to highlight the similarities between the Marshall and Becattini's approach. Finally the paper uses the distinction between logical time, real time and historical time which enable us to study the "localized" economic process in a Becattinian way.