27 resultados para Flood forecasting.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-energy charged particles in the van Allen radiation belts and in solar energetic particle events can damage satellites on orbit leading to malfunctions and loss of satellite service. Here we describe some recent results from the SPACECAST project on modelling and forecasting the radiation belts, and modelling solar energetic particle events. We describe the SPACECAST forecasting system that uses physical models that include wave-particle interactions to forecast the electron radiation belts up to 3 h ahead. We show that the forecasts were able to reproduce the >2 MeV electron flux at GOES 13 during the moderate storm of 7-8 October 2012, and the period following a fast solar wind stream on 25-26 October 2012 to within a factor of 5 or so. At lower energies of 10- a few 100 keV we show that the electron flux at geostationary orbit depends sensitively on the high-energy tail of the source distribution near 10 RE on the nightside of the Earth, and that the source is best represented by a kappa distribution. We present a new model of whistler mode chorus determined from multiple satellite measurements which shows that the effects of wave-particle interactions beyond geostationary orbit are likely to be very significant. We also present radial diffusion coefficients calculated from satellite data at geostationary orbit which vary with Kp by over four orders of magnitude. We describe a new automated method to determine the position at the shock that is magnetically connected to the Earth for modelling solar energetic particle events and which takes into account entropy, and predict the form of the mean free path in the foreshock, and particle injection efficiency at the shock from analytical theory which can be tested in simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing interest aroused by more advanced forecasting techniques, together with the requirement for more accurate forecasts of tourismdemand at the destination level due to the constant growth of world tourism, has lead us to evaluate the forecasting performance of neural modelling relative to that of time seriesmethods at a regional level. Seasonality and volatility are important features of tourism data, which makes it a particularly favourable context in which to compare the forecasting performance of linear models to that of nonlinear alternative approaches. Pre-processed official statistical data of overnight stays and tourist arrivals fromall the different countries of origin to Catalonia from 2001 to 2009 is used in the study. When comparing the forecasting accuracy of the different techniques for different time horizons, autoregressive integrated moving average models outperform self-exciting threshold autoregressions and artificial neural network models, especially for shorter horizons. These results suggest that the there is a trade-off between the degree of pre-processing and the accuracy of the forecasts obtained with neural networks, which are more suitable in the presence of nonlinearity in the data. In spite of the significant differences between countries, which can be explained by different patterns of consumer behaviour,we also find that forecasts of tourist arrivals aremore accurate than forecasts of overnight stays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forecasting coal resources and reserves is critical for coal mine development. Thickness maps are commonly used for assessing coal resources and reserves; however they are limited for capturing coal splitting effects in thick and heterogeneous coal zones. As an alternative, three-dimensional geostatistical methods are used to populate facies distributionwithin a densely drilled heterogeneous coal zone in the As Pontes Basin (NWSpain). Coal distribution in this zone is mainly characterized by coal-dominated areas in the central parts of the basin interfingering with terrigenous-dominated alluvial fan zones at the margins. The three-dimensional models obtained are applied to forecast coal resources and reserves. Predictions using subsets of the entire dataset are also generated to understand the performance of methods under limited data constraints. Three-dimensional facies interpolation methods tend to overestimate coal resources and reserves due to interpolation smoothing. Facies simulation methods yield similar resource predictions than conventional thickness map approximations. Reserves predicted by facies simulation methods are mainly influenced by: a) the specific coal proportion threshold used to determine if a block can be recovered or not, and b) the capability of the modelling strategy to reproduce areal trends in coal proportions and splitting between coal-dominated and terrigenousdominated areas of the basin. Reserves predictions differ between the simulation methods, even with dense conditioning datasets. Simulation methods can be ranked according to the correlation of their outputs with predictions from the directly interpolated coal proportion maps: a) with low-density datasets sequential indicator simulation with trends yields the best correlation, b) with high-density datasets sequential indicator simulation with post-processing yields the best correlation, because the areal trends are provided implicitly by the dense conditioning data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This special issue of Natural Hazards and Earth System Sciences (NHESS) contains eight papers presented as oral or poster contributions in the Natural Hazards NH-1.2 session on"Extreme events induced by weather and climate change: evaluation, forecasting and proactive planning", held at the European Geosciences Union (EGU) General Assembly in Vienna, Austria, on 13-18 April 2008. The aim of the session was to provide an international forum for presenting new results and for discussing innovative ideas and concepts on extreme hydro-meteorological events, including: (i) the assessment of the risk posed by the extreme events, (ii) the expected changes in the frequency and intensity of the events driven by a changing climate and by multiple human- induced causes, (iii) new modelling approaches and original forecasting methods to predict extreme events and their consequences, and (iv) strategies for hazard mitigation and risk reduction, and for a improved adaptation to extreme hydro-meteorological events ...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Purpose- There is a lack of studies on tourism demand forecasting that use non-linear models. The aim of this paper is to introduce consumer expectations in time-series models in order to analyse their usefulness to forecast tourism demand. Design/methodology/approach- The paper focuses on forecasting tourism demand in Catalonia for the four main visitor markets (France, the UK, Germany and Italy) combining qualitative information with quantitative models: autoregressive (AR), autoregressive integrated moving average (ARIMA), self-exciting threshold autoregressions (SETAR) and Markov switching regime (MKTAR) models. The forecasting performance of the different models is evaluated for different time horizons (one, two, three, six and 12 months). Findings- Although some differences are found between the results obtained for the different countries, when comparing the forecasting accuracy of the different techniques, ARIMA and Markov switching regime models outperform the rest of the models. In all cases, forecasts of arrivals show lower root mean square errors (RMSE) than forecasts of overnight stays. It is found that models with consumer expectations do not outperform benchmark models. These results are extensive to all time horizons analysed. Research limitations/implications- This study encourages the use of qualitative information and more advanced econometric techniques in order to improve tourism demand forecasting. Originality/value- This is the first study on tourism demand focusing specifically on Catalonia. To date, there have been no studies on tourism demand forecasting that use non-linear models such as self-exciting threshold autoregressions (SETAR) and Markov switching regime (MKTAR) models. This paper fills this gap and analyses forecasting performance at a regional level. Keywords Tourism, Forecasting, Consumers, Spain, Demand management Paper type Research paper

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Language extinction as a consequence of language shifts is a widespread social phenomenon that affects several million people all over the world today. An important task for social sciences research should therefore be to gain an understanding of language shifts, especially as a way of forecasting the extinction or survival of threatened languages, i.e., determining whether or not the subordinate language will survive in communities with a dominant and a subordinate language. In general, modeling is usually a very difficult task in the social sciences, particularly when it comes to forecasting the values of variables. However, the cellular automata theory can help us overcome this traditional difficulty. The purpose of this article is to investigate language shifts in the speech behavior of individuals using the methodology of the cellular automata theory. The findings on the dynamics of social impacts in the field of social psychology and the empirical data from language surveys on the use of Catalan in Valencia allowed us to define a cellular automaton and carry out a set of simulations using that automaton. The simulation results highlighted the key factors in the progression or reversal of a language shift and the use of these factors allowed us to forecast the future of a threatened language in a bilingual community.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of a hydrologic model depends on the rainfall input data, both spatially and temporally. As the spatial distribution of rainfall exerts a great influence on both runoff volumes and peak flows, the use of a distributed hydrologic model can improve the results in the case of convective rainfall in a basin where the storm area is smaller than the basin area. The aim of this study was to perform a sensitivity analysis of the rainfall time resolution on the results of a distributed hydrologic model in a flash-flood prone basin. Within such a catchment, floods are produced by heavy rainfall events with a large convective component. A second objective of the current paper is the proposal of a methodology that improves the radar rainfall estimation at a higher spatial and temporal resolution. Composite radar data from a network of three C-band radars with 6-min temporal and 2 × 2 km2 spatial resolution were used to feed the RIBS distributed hydrological model. A modification of the Window Probability Matching Method (gauge-adjustment method) was applied to four cases of heavy rainfall to improve the observed rainfall sub-estimation by computing new Z/R relationships for both convective and stratiform reflectivities. An advection correction technique based on the cross-correlation between two consecutive images was introduced to obtain several time resolutions from 1 min to 30 min. The RIBS hydrologic model was calibrated using a probabilistic approach based on a multiobjective methodology for each time resolution. A sensitivity analysis of rainfall time resolution was conducted to find the resolution that best represents the hydrological basin behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From 6 to 8 November 1982 one of the most catastrophic flash-flood events was recorded in the Eastern Pyrenees affecting Andorra and also France and Spain with rainfall accumulations exceeding 400 mm in 24 h, 44 fatalities and widespread damage. This paper aims to exhaustively document this heavy precipitation event and examines mesoscale simulations performed by the French Meso-NH non-hydrostatic atmospheric model. Large-scale simulations show the slow-evolving synoptic environment favourable for the development of a deep Atlantic cyclone which induced a strong southerly flow over the Eastern Pyrenees. From the evolution of the synoptic pattern four distinct phases have been identified during the event. The mesoscale analysis presents the second and the third phase as the most intense in terms of rainfall accumulations and highlights the interaction of the moist and conditionally unstable flows with the mountains. The presence of a SW low level jet (30 m s-1) around 1500 m also had a crucial role on focusing the precipitation over the exposed south slopes of the Eastern Pyrenees. Backward trajectories based on Eulerian on-line passive tracers indicate that the orographic uplift was the main forcing mechanism which triggered and maintained the precipitating systems more than 30 h over the Pyrenees. The moisture of the feeding flow mainly came from the Atlantic Ocean (7-9 g kg-1) and the role of the Mediterranean as a local moisture source was very limited (2-3 g kg-1) due to the high initial water vapour content of the parcels and the rapid passage over the basin along the Spanish Mediterranean coast (less than 12 h).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the world of transport management, the term ‘anticipation’ is gradually replacing ‘reaction’. Indeed, the ability to forecast traffic evolution in a network should ideally form the basis for many traffic management strategies and multiple ITS applications. Real-time prediction capabilities are therefore becoming a concrete need for the management of networks, both for urban and interurban environments, and today’s road operator has increasingly complex and exacting requirements. Recognising temporal patterns in traffic or the manner in which sequential traffic events evolve over time have been important considerations in short-term traffic forecasting. However, little work has been conducted in the area of identifying or associating traffic pattern occurrence with prevailing traffic conditions. This paper presents a framework for detection pattern identification based on finite mixture models using the EM algorithm for parameter estimation. The computation results have been conducted taking into account the traffic data available in an urban network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper shows an in-depth analysis of the evolution of floods and precipitation in Catalonia for the period 1981-2010. In order to have homogeneous information, and having in mind that not gauge data was available for all the events, neither for all the rivers and stream flows, daily press from a specific newspaper has been systematically analysed for this period. Furthermore a comparison with a longer period starting in 1900 has been done. 219 flood events (mainly flash flood events) have been identified for the period of 30 years (375 starting in 1900), 79 of them were ordinary, 117 of them were extraordinary and 23 of them were catastrophic, being autumn and summer the seasons with the maxima values. 19% of the events caused a total of 110 casualties. 60% of them died when they tried to cross the street or the stream. Factors like the evolution of precipitation, population density and other socio-economical aspects have been considered. The trend analysis shows an increase of 1 flood/decade that probably has been mainly due to inter-annual and intra-annual changes in population density and in land-use and land-cover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is growing concern that flooding is becoming more frequent and severe in Europe. A better understanding of flood regime changes and their drivers is therefore needed. The paper reviews the current knowledge on flood regime changes in European rivers that has traditionally been obtained through two alternative research approaches. The first approach is the data-based detection of changes in observed flood events. Current methods are reviewed together with their challenges and opportunities. For example, observation biases, the merging of different data sources and accounting for nonlinear drivers and responses. The second approach consists of modelled scenarios of future floods. Challenges and opportunities associated with flood change scenarios are discussed such as fully accounting for uncertainties in the modelling cascade and feedbacks. To make progress in flood change research, we suggest that a synthesis of these two approaches is needed. This can be achieved by focusing on long duration records and flood-rich and flood-poor periods rather than on short duration flood trends only, by formally attributing causes of observed flood changes, by validating scenarios against observed flood regime dynamics, and by developing low-dimensional models of flood changes and feedbacks. The paper finishes with a call for a joint European flood change research network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most motor bodily injury (BI) claims are settled by negotiation, with fewer than 5% of cases going to court. A well-defined negotiation strategy is thus very useful for insurance companies. In this paper we assume that the monetary compensation awarded in court is the upper amount to be offered by the insurer in the negotiation process. Using a real database, a log-linear model is implemented to estimate the maximal offer. Non-spherical disturbances are detected. Correlation occurs when various claims are settled in the same judicial verdict. Group wise heteroscedasticity is due to the influence of the forensic valuation on the final compensation amount. An alternative approximation based on generalized inference theory is applied to estimate confidence intervals on variance components, since classical interval estimates may be unreliable for datasets with unbalanced structures.