18 resultados para Executive Ability
Resumo:
An extensive literature suggests a link between executive functions and aggressive behavior in humans, pointing mostly to an inverse relationship, i.e., increased tendencies toward aggression in individuals scoring low on executive function tests. This literature is limited, though, in terms of the groups studied and the measures of executive functions. In this paper, we present data from two studies addressing these issues. In a first behavioral study, we asked whether high trait aggressiveness is related to reduced executive functions. A sample of over 600 students performed in an extensive behavioral test battery including paradigms addressing executive functions such as the Eriksen Flanker task, Stroop task, n-back task, and Tower of London (TOL). High trait aggressive participants were found to have a significantly reduced latency score in the TOL, indicating more impulsive behavior compared to low trait aggressive participants. No other differences were detected. In an EEG-study, we assessed neural and behavioral correlates of error monitoring and response inhibition in participants who were characterized based on their laboratory-induced aggressive behavior in a competitive reaction time task. Participants who retaliated more in the aggression paradigm and had reduced frontal activity when being provoked did not, however, show any reduction in behavioral or neural correlates of executive control compared to the less aggressive participants. Our results question a strong relationship between aggression and executive functions at least for healthy, high-functioning people.
Resumo:
Several studies have suggested a bilingual advantage in executive functions, presumably due to bilinguals' massive practice with language switching that requires executive resources, but the results are still somewhat controversial. Previous studies are also plagued by the inherent limitations of a natural groups design where the participant groups are bound to differ in many ways in addition to the variable used to classify them. In an attempt to introduce a complementary analysis approach, we employed multiple regression to study whether the performance of 30- to 75-year-old FinnishSwedish bilinguals (N = 38) on tasks measuring different executive functions (inhibition, updating, and set shifting) could be predicted by the frequency of language switches in everyday life (as measured by a language switching questionnaire), L2 age of acquisition, or by the self-estimated degree of use of both languages in everyday life. Most consistent effects were found for the set shifting task where a higher rate of everyday language switches was related to a smaller mixing cost in errors. Mixing cost is thought to reflect top-down management of competing task sets, thus resembling the bilingual situation where decisions of which language to use has to be made in each conversation. These findings provide additional support to the idea that some executive functions in bilinguals are affected by a lifelong experience in language switching and, perhaps even more importantly, suggest a complementary approach to the study of this issue.
Resumo:
The identification of biomarkers of vascular cognitive impairment is urgent for its early diagnosis. The aim of this study was to detect and monitor changes in brain structure and connectivity, and to correlate them with the decline in executive function. We examined the feasibility of early diagnostic magnetic resonance imaging (MRI) to predict cognitive impairment before onset in an animal model of chronic hypertension: Spontaneously Hypertensive Rats. Cognitive performance was tested in an operant conditioning paradigm that evaluated learning, memory, and behavioral flexibility skills. Behavioral tests were coupled with longitudinal diffusion weighted imaging acquired with 126 diffusion gradient directions and 0.3 mm(3) isometric resolution at 10, 14, 18, 22, 26, and 40 weeks after birth. Diffusion weighted imaging was analyzed in two different ways, by regional characterization of diffusion tensor imaging (DTI) indices, and by assessing changes in structural brain network organization based on Q-Ball tractography. Already at the first evaluated times, DTI scalar maps revealed significant differences in many regions, suggesting loss of integrity in white and gray matter of spontaneously hypertensive rats when compared to normotensive control rats. In addition, graph theory analysis of the structural brain network demonstrated a significant decrease of hierarchical modularity, global and local efficacy, with predictive value as shown by regional three-fold cross validation study. Moreover, these decreases were significantly correlated with the behavioral performance deficits observed at subsequent time points, suggesting that the diffusion weighted imaging and connectivity studies can unravel neuroimaging alterations even overt signs of cognitive impairment become apparent.