118 resultados para Energy industries.
Resumo:
The link between energy consumption and economic growth has been widely studied in the economic literature. Understanding this relationship is important from both an environmental and a socio-economic point of view, as energy consumption is crucial to economic activity and human environmental impact. This relevance is even higher for developing countries, since energy consumption per unit of output varies through the phases of development, increasing from an agricultural stage to an industrial one and then decreasing for certain service based economies. In the Argentinean case, the relevance of energy consumption to economic development seems to be particularly important. While energy intensity seems to exhibit a U-Shaped curve from 1990 to 2003 decreasing slightly after that year, total energy consumption increases along the period of analysis. Why does this happen? How can we relate this result with the sustainability debate? All these questions are very important due to Argentinean hydrocarbons dependence and due to the recent reduction in oil and natural gas reserves, which can lead to a lack of security of supply. In this paper we study Argentinean energy consumption pattern for the period 1990-2007, to discuss current and future energy and economic sustainability. To this purpose, we developed a conventional analysis, studying energy intensity, and a non conventional analysis, using the Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) accounting methodology. Both methodologies show that the development process followed by Argentina has not been good enough to assure sustainability in the long term. Instead of improving energy use, energy intensity has increased. The current composition of its energy mix, and the recent economic crisis in Argentina, as well as its development path, are some of the possible explanations.
Resumo:
This paper analyzes the role of the energy transformation index and of final energy consumption per GDP unit in the disparities in energy intensity across countries. In that vein, we use a Theil decomposition approach to analyze global primary energy intensity inequality as well as inequality across different regions of the world and inequality within these regions. The paper first demonstrates the pre-eminence of divergence in final energy consumption per GDP unit in explaining global primary energy intensity inequality and its evolution during the 1971-2006 period. Secondly, it shows the lower (albeit non negligible) impact of the transformation index in global primary energy inequality. Thirdly, the relevance of regions as unit of analysis in studying crosscountry energy intensity inequality and their explanatory factors is highlighted. And finally, how regions around the world differ as to the relevance of the energy transformation index in explaining primary energy intensity inequality.
Resumo:
In this study I try to explain the systemic problem of the low economic competitiveness of nuclear energy for the production of electricity by carrying out a biophysical analysis of its production process. Given the fact that neither econometric approaches nor onedimensional methods of energy analyses are effective, I introduce the concept of biophysical explanation as a quantitative analysis capable of handling the inherent ambiguity associated with the concept of energy. In particular, the quantities of energy, considered as relevant for the assessment, can only be measured and aggregated after having agreed on a pre-analytical definition of a grammar characterizing a given set of finite transformations. Using this grammar it becomes possible to provide a biophysical explanation for the low economic competitiveness of nuclear energy in the production of electricity. When comparing the various unit operations of the process of production of electricity with nuclear energy to the analogous unit operations of the process of production of fossil energy, we see that the various phases of the process are the same. The only difference is related to characteristics of the process associated with the generation of heat which are completely different in the two systems. Since the cost of production of fossil energy provides the base line of economic competitiveness of electricity, the (lack of) economic competitiveness of the production of electricity from nuclear energy can be studied, by comparing the biophysical costs associated with the different unit operations taking place in nuclear and fossil power plants when generating process heat or net electricity. In particular, the analysis focuses on fossil-fuel requirements and labor requirements for those phases that both nuclear plants and fossil energy plants have in common: (i) mining; (ii) refining/enriching; (iii) generating heat/electricity; (iv) handling the pollution/radioactive wastes. By adopting this approach, it becomes possible to explain the systemic low economic competitiveness of nuclear energy in the production of electricity, because of: (i) its dependence on oil, limiting its possible role as a carbon-free alternative; (ii) the choices made in relation to its fuel cycle, especially whether it includes reprocessing operations or not; (iii) the unavoidable uncertainty in the definition of the characteristics of its process; (iv) its large inertia (lack of flexibility) due to issues of time scale; and (v) its low power level.
Resumo:
The report presents a grammar capable of analyzing the process of production of electricity in modular elements for different power-supply systems, defined using semantic and formal categories. In this way it becomes possible to individuate similarities and differences in the process of production of electricity, and then measure and compare “apples” with “apples” and “oranges” with “oranges”. For instance, when comparing the various unit operations of the process of production of electricity with nuclear energy to the analogous unit operations of the process of production of fossil energy, we see that the various phases of the process are the same. The only difference is related to characteristics of the process associated with the generation of heat which are completely different in the two systems. As a matter of facts, the performance of the production of electricity from nuclear energy can be studied, by comparing the biophysical costs associated with the different unit operations taking place in nuclear and fossil power plants when generating process heat or net electricity. By adopting this approach, it becomes possible to compare the performance of the two power-supply systems by comparing their relative biophysical requirements for the phases that both nuclear energy power plants and fossil energy power plants have in common: (i) mining; (ii) refining/enriching; (iii) generating heat/electricity; (iv) handling the pollution/radioactive wastes. This report presents the evaluation of the biophysical requirements for the two powersupply systems: nuclear energy and fossil energy. In particular, the report focuses on the following requirements: (i) electricity; (ii) fossil-fuels, (iii) labor; and (iv) materials.
Resumo:
Vegeu el resum a l'inici del document de l'arxiu adjunt
Resumo:
The disintegration of the USSR brought the emergence of a new geo-energy space in Central Asia. This space arose in the context of a global energy transition, which began in the late 1970s. Therefore, this new space in a changing energy world requires both new conceptual frameworks of analysis and the creation of new analytical tools. Taking into account this fact, our paper attempts to apply the theoretical framework of the Global Commodity Chain (GCC) to the case of natural resources in Central Asia. The aim of the paper is to check if there could be any Central Asia’s geo-energy space, assuming that this space would exist if natural resources were managed with regional criteria. The paper is divided into four sections. First an introduction that describes the new global energy context within natural resources of Central Asia would be integrated. Secondly, the paper justifies why the GCC methodology is suitable for the study of the value chains of energy products. Thirdly, we build up three cases studies (oil and uranium from Kazakhstan and gas from Turkmenistan) which reveal a high degree of uncertainty over the direction these chains will take. Finally, we present the conclusions of this study that state that the most plausible scenario would be the integration of energy resources of these countries in GCC where the core of the decision-making process will be far away from the region of Central Asia. Key words: Energy transition, geo-energy space, Global Commodity Chains, Central Asia
Resumo:
CO2 emissions induced by human activities are the major cause of climate change; hence, strong environmental policy that limits the growing dependence on fossil fuel is indispensable. Tradable permits and environmental taxes are the usual tools used in CO2 reduction strategies. Such economic tools provide incentives to polluting industries to reduce their emissions through market signals. The aim of this work is to investigate the direct and indirect effects of an environmental tax on Spanish products and services. We apply an environmentally extended input-output (EIO) model to identify CO2 emission intensities of products and services and, accordingly, we estimate the tax proportional to these intensities. The short-term price effects are analyzed using an input-output price model. The effect of tax introduction on consumption prices and its influence on consumers’ welfare are determined. We also quantify the environmental impacts of such taxation in terms of the reduction in CO2 emissions. The results, based on the Spanish economy for the year 2007, show that sectors with relatively poor environmental profile are subjected to high environmental tax rates. And consequently, applying a CO2 tax on these sectors, increases production prices and induces a slight increase in consumer price index and a decrease in private welfare. The revenue from the tax could be used to counter balance the negative effects on social welfare and also to stimulate the increase of renewable energy shares in the most impacting sectors. Finally, our analysis highlights that the environmental and economic goals cannot be met at the same time with the environmental taxation and this shows the necessity of finding other (complementary or alternative) measures to ensure both the economic and ecological efficiencies. Keywords: CO2 emissions; environmental tax; input-output model, effects of environmental taxation.
Resumo:
El poder de l'Estat i la sobirania tradicional s'està deteriorant de manera constant, sobretot en termes de la provisió de certs béns públics fonamentals. Els Estats, en particular, són incapaços de manejar el coneixement i la informació que és essencial per mantenir la competitivitat i la sostenibilitat en una economia interdependent. Estructures fiables de la governança mundial i la cooperació internacional estan lluny de ser establertes. Energia com a problema a les agendes p dels governs, les empreses privades i la societat civil és un exemple manifest d'aquesta dinàmica.. L'actual sistema de governança mundial d'energia implica accions polítiques disperses per actors divers. L'Agència Internacional de l'Energia té un paper destacat, però està debilitat per la seva composició limitada i basada en el coneixement- epistèmic en lloc del material o executiu. Aquest treball sosté que ni la mida ni nombre de membres disponibles estan dificultant la governabilitat mundial d'energia. Més aviat, l'energia és una sèrie de béns públics que es troben als llimbs, on els estats no poden pagar la seva disposició, així com els diversos interessos impedir l'establiment d'una autoritat internacional. Després de la introducció de la teoria del règim internacional i el concepte de coneixement basats en les comunitats epistèmiques, l'article revisa l'estat actual de la governabilitat de l'energia mundia. A continuació es presenta una comparació d'aquesta estructura amb els règims de govern nacional i regional, d'una banda, i amb règims globals ambientals i de salut, de l'altra
Resumo:
The EU has been one of the main actors involved in the construction process of an international climate change regime, adopting it as an identity sign in the international arena. This activism has reverted in the European political agenda and in the one of its Members States. Therefore, climate change has become a driver for the EU growing participation in energy policy and for its governance evolution. In this context, much attention has been paid to the climate and energy policies integration agreed after the 2007 spring European Council. Apparently, this decision meant a decisive step towards the incorporation of the environmental variable in the energy policy-making. Moreover, the Action Plan [2007-2009] “Energy Policy for Europe” outlined priority actions in a variety of energy-related areas, implying the new European Energy Policy commencement. Against this background, there is still much left to understand about its formulation and its further development. Rooted on the Environmental Policy Integration approach, this paper traces the increasing proximity between environment and energy policies in order to understand the green contribution to the European Energy Policy construction.
Resumo:
El novembre de 2010, la Comissió Europea ha finalment donat a conèixer la seva "Energia 2020 Comunicació", un document estratègic en el marc més ampli del programa "Europa 2020". Una estratègia per al desenvolupament sostenible intel · ligent, i creixement inclusiu posa les bases d'un nou enfocament a la política d'energia a la UE. En el marc d'Europa 2020, la Iniciativa d'Energia recopila els resultats que ja s'han obtingut a través de la Estratègia de Lisboa 2000-2010, s'identifiquen les deficiències del passat i i introdueix nous objectius ambiciosos per a la UE en matèria de política energètica.
Resumo:
Encara falta per fer possible una transformació estratègica d'Europa del sistema d'energia, però el que és de la mateixa importància com a objectius a llarg termini de la FER i Reduccions de GEH són vinculants i forts objectius d'eficiència energètica, no només per 2020, però també per al 2030, 2040 i 2050, com aquesta força ajudaria a fixar l'augment de les energies renovables en el total d'energia consum i per reduir el total Emissions de GEH d'Europa en general, i les del sector de l'energia en particular, encara sent un dels majors emissors de gasos d'efecte hivernacle de tots els sectors. La refosa Directiva, prevista per 2011/12 ha de ser un bones finestres d'oportunitat per finalment establir objectius vinculants d'eficiència energètica, l'únic pilar que encara falta en la força energia interdependents i estratègia sobre el clima de la UE, basat en la reducció de gasos d'efecte hivernacle i i l'eficiència energètica.
Resumo:
Disseny i posada en marxa d’una indústria càrnia elaboradora d’embotits cuits on es segueixen criteris d’eficiència energètica en tot el procés. La indústria s’ubicarà al polígon industrial Girona, sector Ponent, del terme municipal de Riudellots de la Selva a la comarca de la Selva, en una propietat del promotor, dotada amb bones comunicacions per carretera, ferrocarril i avió, i a més es trova situada a prop de nuclis urbans importants com Girona i Barcelona. Per tant, per la seva localització i les bones infraestructures existents podem assegurar que tindrà un bon accés per la recepció de les matèries primeres i per la distribució dels productes acabats. Es dissenyen les instal•lacions de la indústria per garantir una capacitat productiva de 1.000 tones de producte acabat a l’any. La comercialització dels seus productes es preveu que sigui bàsicament a nivell de la província de Girona, abraçant una quota de mercat del sector carni en aquesta zona d’un 10%, i podent ampliar el seu mercat objectiu en un futur a d’altres províncies o a l’estranger si fos viable. Del volum anual de producció, es decideix que el 45% de la producció vagi destinada a envasos llescats, ja que la venda d’un producte llescat fa que el consumidor final compri l’estrictament necessari, per tant aquest fet assegura que elmercat sigui més estable. El 55% restant es destina a la presentació a l’engròs, per poder servir el producte a carnisseries o al sector restauració
Resumo:
The subject of this project is about “Energy Dispersive X-Ray Fluorescence ” (EDXRF).This technique can be used for a tremendous variety of elemental analysis applications.It provides one of the simplest, most accurate and most economic analytical methods for thedetermination of the chemical composition of many types of materials.The purposes of this project are:- To give some basic information about Energy Dispersive X-ray Fluorescence.- To perform qualitative and quantitative analysis of different samples (water-dissolutions,powders, oils,..) in order to define the sensitivity and detection limits of the equipment.- To make a comprehensive and easy-to-use manual of the ‘ARL QUANT’X EnergyDispersive X-Ray Fluorescence’ apparatus
Resumo:
Selected configuration interaction (SCI) for atomic and molecular electronic structure calculations is reformulated in a general framework encompassing all CI methods. The linked cluster expansion is used as an intermediate device to approximate CI coefficients BK of disconnected configurations (those that can be expressed as products of combinations of singly and doubly excited ones) in terms of CI coefficients of lower-excited configurations where each K is a linear combination of configuration-state-functions (CSFs) over all degenerate elements of K. Disconnected configurations up to sextuply excited ones are selected by Brown's energy formula, ΔEK=(E-HKK)BK2/(1-BK2), with BK determined from coefficients of singly and doubly excited configurations. The truncation energy error from disconnected configurations, Δdis, is approximated by the sum of ΔEKS of all discarded Ks. The remaining (connected) configurations are selected by thresholds based on natural orbital concepts. Given a model CI space M, a usual upper bound ES is computed by CI in a selected space S, and EM=E S+ΔEdis+δE, where δE is a residual error which can be calculated by well-defined sensitivity analyses. An SCI calculation on Ne ground state featuring 1077 orbitals is presented. Convergence to within near spectroscopic accuracy (0.5 cm-1) is achieved in a model space M of 1.4× 109 CSFs (1.1 × 1012 determinants) containing up to quadruply excited CSFs. Accurate energy contributions of quintuples and sextuples in a model space of 6.5 × 1012 CSFs are obtained. The impact of SCI on various orbital methods is discussed. Since ΔEdis can readily be calculated for very large basis sets without the need of a CI calculation, it can be used to estimate the orbital basis incompleteness error. A method for precise and efficient evaluation of ES is taken up in a companion paper
Resumo:
Møller-Plesset (MP2) and Becke-3-Lee-Yang-Parr (B3LYP) calculations have been used to compare the geometrical parameters, hydrogen-bonding properties, vibrational frequencies and relative energies for several X- and X+ hydrogen peroxide complexes. The geometries and interaction energies were corrected for the basis set superposition error (BSSE) in all the complexes (1-5), using the full counterpoise method, yielding small BSSE values for the 6-311 + G(3df,2p) basis set used. The interaction energies calculated ranged from medium to strong hydrogen-bonding systems (1-3) and strong electrostatic interactions (4 and 5). The molecular interactions have been characterized using the atoms in molecules theory (AIM), and by the analysis of the vibrational frequencies. The minima on the BSSE-counterpoise corrected potential-energy surface (PES) have been determined as described by S. Simón, M. Duran, and J. J. Dannenberg, and the results were compared with the uncorrected PES