22 resultados para Electron paramagnetic resonance spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin films of nanostructured silicon (ns-Si:H) were deposited by plasma-enhanced chemical vapor deposition in the presence of silicon nanoparticles at 100 C substrate temperature using silane and hydrogen gas mixture under continuous wave (cw) plasma conditions. The nanostructure of the films has been demonstrated by diverse ways: transmission electron microscopy, Raman spectroscopy and x-ray diffraction, which have shown the presence of ordered silicon clusters (1!=2 nm) embedded in an amorphous silicon matrix. Due to the presence of these ordered domains, the films crystallize faster than standard hydrogenated amorphous silicon samples, as evidenced by electrical measurements during the thermal annealing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aggregates of oxygen vacancies (F centers) represent a particular form of point defects in ionic crystals. In this study we have considered the combination of two oxygen vacancies, the M center, in the bulk and on the surface of MgO by means of cluster model calculations. Both neutral and charged forms of the defect M and M+ have been taken into account. The ground state of the M center is characterized by the presence of two doubly occupied impurity levels in the gap of the material; in M+ centers the highest level is singly occupied. For the ground-state properties we used a gradient corrected density functional theory approach. The dipole-allowed singlet-to-singlet and doublet-to-doublet electronic transitions have been determined by means of explicitly correlated multireference second-order perturbation theory calculations. These have been compared with optical transitions determined with the time-dependent density functional theory formalism. The results show that bulk M and M+ centers give rise to intense absorptions at about 4.4 and 4.0 eV, respectively. Another less intense transition at 1.3 eV has also been found for the M+ center. On the surface the transitions occur at 1.6 eV (M+) and 2 eV (M). The results are compared with recently reported electron energy loss spectroscopy spectra on MgO thin films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that a chemically engineered structural asymmetry in [Tb2] molecular clusters renders the two weakly coupled Tb3+ spin qubits magnetically inequivalent. The magnetic energy level spectrum of these molecules meets then all conditions needed to realize a universal CNOT quantum gate. A proposal to realize a SWAP gate within the same molecule is also discussed. Electronic paramagnetic resonance experiments confirm that CNOT and SWAP transitions are not forbidden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-lived states (LLS) are relaxation-favoured eigenstates of J-coupled magnetic nuclei. LLS were measured, along with classical 1H and 15 N relaxation rate constants, in aminoacids of the N-terminal Unique domain of the c-Src kinase (USrc), which is disordered in vitro under physiological conditions. The relaxation rates of LLS are a probe for motions and interactions in biomolecules. LLS of the aliphatic protons of glycines, with lifetimes ca. four times longer than their spin-lattice relaxation times, are reported for the first time in an intrinsically disordered protein domain (IDP). LLS relaxation experiments were integrated with 2D spectroscopy methods, further adapting them for studies on proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water soluble perchlorinated trityl (PTM) radicals were found to be effective 95 GHz DNP (dynamic nuclear polarization) polarizers in ex situ (dissolution) 13C DNP (Gabellieri et al., Angew Chem., Int. Ed. 2010, 49, 3360). The degree of the nuclear polarization obtained was reported to be dependent on the position of the chlorine substituents on the trityl skeleton. In addition, on the basis of the DNP frequency sweeps it was suggested that the 13C NMR signal enhancement is mediated by the Cl nuclei. To understand the DNP mechanism of the PTM radicals we have explored the 95 GHz EPR characteristics of these radicals that are relevant to their performance as DNP polarizers. The EPR spectra of the radicals revealed axially symmetric g-tensors. A comparison of the spectra with the 13C DNP frequency sweeps showed that although the solid effect mechanism is operational the DNP frequency sweeps reveal some extra width suggesting that contributions from EPR forbidden transitions involving 35,37Cl nuclear flips are likely. This was substantiated experimentally by ELDOR (electron-electron double resonance) detected NMR measurements, which map the EPR forbidden transitions, and ELDOR experiments that follow the depolarization of the electron spin upon irradiation of the forbidden EPR transitions. DFT (density functional theory) calculations helped to assign the observed transitions and provided the relevant spin Hamiltonian parameters. These results show that the 35,37Cl hyperfine and nuclear quadrupolar interactions cause a considerable nuclear state mixing at 95 GHz thus facilitating the polarization of the Cl nuclei upon microwave irradiation. Overlap of Cl nuclear frequencies and the 13C Larmor frequency further facilitates the polarization of the 13C nuclei by spin diffusion. Calculation of the 13C DNP frequency sweep based on the Cl nuclear polarization showed that it does lead to an increase in the width of the spectra, improving the agreement with the experimental sweeps, thus supporting the existence of a new heteronuclear assisted DNP mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron energy-loss spectroscopy is used to map composition and electronic states in epitaxial La2/3Ca1/3MnO3 films grown on SrTiO3 001 and 110 substrates. It is found that in partially relaxed 110 films cationic composition and valence state of Mn3+/4+ ions are preserved across the film thickness. In contrast, in fully strained 001 films, the Ca/La ratio gradually changes across the film, being La rich at film/substrate interface and La depleted at free surface; Mn valence state changes accordingly. These observations suggest that a strongly orientation-dependent adaptative composition mechanism dominates stress accommodation in manganite films and provides microscopic understanding of their dissimilar magnetic properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several analogs of the cytotoxic thiopeptide IB-01211 or Mechercharmycin A (1) have been synthetized. The cytotoxicity of 1 and the synthetized analogs was evaluated against a panel of three human tumor cell lines. Thiopeptide 1 and the most active derivatives, 2 and 3c, were chosen for further studies like effects on cell cycle progression and induction of apoptosis. Interestingly, the inhibition of cell division and activation of a programmed cell death by apoptosis was detected.